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Abstract

We propose a first-order method to solve the cubic regularization subproblem (CRS)
based on a novel reformulation. The reformulation is a constrained convex optimi-
zation problem whose feasible region admits an easily computable projection. Our
reformulation requires computing the minimum eigenvalue of the Hessian. To avoid
the expensive computation of the exact minimum eigenvalue, we develop a surro-
gate problem to the reformulation where the exact minimum eigenvalue is replaced
with an approximate one. We then apply first-order methods such as the Nester-
ov’s accelerated projected gradient method (APG) and projected Barzilai-Borwein
method to solve the surrogate problem. As our main theoretical contribution, we
show that when an e-approximate minimum eigenvalue is computed by the Lanczos
method and the surrogate problem is approximately solved by APG, our approach
returns an e-approximate solution to CRS in O(e~!/?) matrix-vector multiplica-
tions (where O(-) hides the logarithmic factors). Numerical experiments show that
our methods are comparable to and outperform the Krylov subspace method in the
easy and hard cases, respectively. We further implement our methods as subproblem
solvers of adaptive cubic regularization methods, and numerical results show that
our algorithms are comparable to the state-of-the-art algorithms.
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1 Introduction

Motivated by applications in machine learning and signal processing, optimization
problems of the following form have attracted significant attention:

min F(x), (1)
where F is a twice continuously differentiable function that is possibly non-convex.
The cubic regularization method [9, 19] is among the most successful algorithms for
solving problem (1). At each iteration of the cubic regularization method, the sub-
problem takes the form

minf,(x) := %xTAx +bTx+ §||x||3, (CRS)
where ||-|| denotes the Euclidean norm, A is an n X n symmetric matrix (not nec-
essarily positive semidefinite) and p is a regularization parameter. In particular, A
and b represent the Hessian and gradient of the function F at the current iterate,
respectively. It was first proved by Nesterov and Polyak [19] that the cubic regu-
larization method enjoys an iteration complexity of O(e~>/?) if each subproblem is
solved exactly. Cartis et al. [9] developed a generalization of the cubic regulariza-
tion method, called ARC, which allows the subproblems to be solved inexactly and
the regularization parameter p > 0 to be chosen adaptively. In the same paper, they
showed that the iteration complexity of ARC is again O(e~>/?). Complementing to
these global complexity results, Yue et al. [25] showed that the cubic regulariza-
tion method enjoys a local quadratic convergence rate under an error bound-type
condition.

Despite the above strong theoretical guarantees, the practical performance of
the cubic regularization method depends critically on the efficiency of solving its
subproblems. As such, there have been considerable endeavors on developing fast
algorithms for solving (CRS). One of the most successful algorithms for solv-
ing large—scale instances of (CRS) in practice is the Krylov subspace method [9].
Carmon and Duchi [7] provided the first the convergence rate analysis of the Kry-
lov subspace method. In particular, they showed that the Krylov subspace method
achieves an e-approximate optimal solution in O(e~'/?) or O(y/x log e~!) operations
(matrix-vector multiplications) in the easy case!, where « is the condition number
of (CRS). Unfortunately, the Krylov subspace method may fail to converge to the
optimal solution when the problem (CRS) is in the hard case or close to being in the
hard case [7]. Carmon and Duchi also showed in another paper [6] that the gradient
descent method is able to converge to the global minimizer if the step size is suf-
ficiently small, and the convergence rate is O(e~') (where O(-) hides the logarith-
mic factors). Although, for the problem (CRS), the convergence rate of the gradi-
ent descent method is worse than that of the Krylov subspace method, it works in

! For the problem (CRS), it is said to be in the easy if the optimal solution x* satisfies p||x*|| > =,
where 4, is the minimum eigenvalue of A, and hard case otherwise.
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both the easy and hard cases. On the other hand, based on the cubic regularization
method, Agarwal et al. [1] derived an algorithm with O(e~7/*) operations for finding
an approximate local minimum of problem (1), i.e., a point x € R”" satisfying

IVF@)| <e and V?F(x)+ /el >0,

where I denotes the identity matrix of appropriate dimension and, for any symmetric
matrix M, the inequality M > 0 means that M is positive semidefinite. A key com-
ponent of their result is an algorithm for computing an approximate solution to the
problem (CRS) in O(e~'/*) operations. However, the approximate solution returned
by this algorithm is not an e-approximate global minimizer of the problem (CRS)
in the traditional sense (see [1 Theorem 2] for details). Furthermore, the algorithm
in [1] for solving (CRS) requires sophisticated parameter tuning, and no numeri-
cal results had been provided in the paper. Finally, a Newton-like method for solv-
ing problems of the form (1) had been recently developed by Birgin and Martinez
[5]. Each subproblem of their algorithm, which is similar to but not the same as
(CRS), is constructed and can be efficiently solved by using the so-called mixed fac-
torization (see [5, Sect. 2] for details) of the (approximate) Hessian of F at the cur-
rent point. Birgin and Martinez [5] advocated in particular the mixed factorization
obtained from the Bunch-Parlett-Kaufman factorization [13], a matrix factorization
whose computational cost is similar to that of the Cholesky factorization.

From the above discussion, it is desirable to have an algorithm for solving the
problem (CRS) that works efficiently in practice for both the hard and easy cases
and enjoys theoretical guarantees. In this paper, we achieve this goal by developing
a first-order method for solving arbitrary instances of (CRS) with O(e~!/?) matrix-
vector multiplications. Our approach is based on a novel reformulation of the prob-
lem (CRS), which is a constrained convex optimization problem built using the min-
imum eigenvalue of the matrix A. The feasible region of the reformulation admits
an efficient, closed-form projection. Therefore, when the exact computation of the
minimum eigenvalue is viable, we can apply any algorithm for solving constrained
convex optimization problems to solve the reformulation to global optimality. The
optimal solution to the problem (CRS) can then be constructed by using the opti-
mal solution of the reformulation. In practice, it is often prohibitively expensive to
compute the exact minimum eigenvalue of the matrix A, if not impossible. We cir-
cumvent this limitation by developing a surrogate problem to the reformulation. The
surrogate problem is again a constrained convex optimization problem with an eas-
ily computable projection onto its feasible region. More importantly, the surrogate
problem requires only an approximate minimum eigenvalue, which can be computed
efficiently by using, e.g., the Lanczos method [13]. Similarly, an e-approximate opti-
mal solution of the problem (CRS) can be constructed from an e-approximate solu-
tion of the surrogate problem.

The said bound O(e~'/?) on the number of operations is proved by combining the
follow two ideas. First, for any 6 € (0, 1), the Lanczos method returns an e-approxi-
mate minimum eigenvalue in O(e~'/?log(n/§)) matrix-vector multiplications with
probability at least 1 — 6. Second, solving the surrogate problem by the Nesterov’s
accelerated projected gradient descent method [3, 20] (APG) requires O(e~'/?)
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iterations, where each iteration consists of one gradient and Hessian evaluations and
one matrix-vector multiplication. Therefore, the total number of operations of our
method is bounded by O(e~'/?log(n/8)) (see Theorem 4). This bound is similar to
the sublinear bound for the Krylov subspace method proved in [7] in the easy case
and better than that of the gradient descent method in [6]. Note also that our bound
is for the subproblem and hence not directly comparable with that of [1]. Besides,
our algorithm has the advantage that it is easily implementable. Furthermore, as
we shall see in our numerical section, the proposed algorithm works efficiently in
practice for high-dimensional problems—our algorithm shows a comparable perfor-
mance to the Krylov subspace method in the easy case. An another advantage of our
algorithm is that, unlike the Krylov subspace method, it works in both the easy and
hard cases. This saves us from the computational overhead due to the need of detect-
ing the hard case.
We remark that our approach is inspired by the recent line of research [15, 24] on
linear-time algorithms for the trust region subproblem
min 1xTAx + b7x
xER" 2
(TRS)
subject to ||x||> <1,

and the close resemblance between the problems (CRS) and (TRS). More specifi-
cally, the algorithms in [15, 24] are based on a convex reformulation for the (TRS)
derived in [11]. Motivated by the works [15, 24], Jiang and Li [17] recently derived
a novel convex reformulation for the generalized trust region subproblem, which
further inspires us to explore hidden convexity for (CRS) in this paper. It should also
be pointed out that our reformulation and its surrogate problem offer great potential
and flexibility for the design of fast algorithms to solve the problem (CRS). Indeed,
one can apply any algorithm for constrained convex optimization problems to solve
these two optimization problems. Proving theoretical guarantees for other algo-
rithms for solving these two models is left as a future research.

The remaining of this paper is organized as follows. In Sect. 2, we derive our
convex reformulation based on the minimum eigenvalue of matrix A and discuss
the computation of the projection to its feasible region. In Sect. 3, we present a sur-
rogate problem for (CRS) and theoretically analyze the complexity of our method
when applying the APG to solve the surrogate problem with an approximate mini-
mum eigenvalue computed by the Lanczos method. In Sect. 4, we first compare the
numerical performance of our methods with the Krylov subspace method and then
compare our methods against others as a subproblem solver for ARC. We conclude
our paper in Sect. 5.

2 Convex reformulation

We first record the optimality condition of (CRS) [9, 19], which is given by the fol-
lowing system of equations in x and A:
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Ax+b+Ax=0, A+ A >0, and A =pl|x|. )

This optimality condition will be frequently used in this paper. It is obvious that
(CRS) is equivalent to the following problem:

3
min %xTAx +bTx+ 8y2

xeR”,yeR

(RP)
subject to Xl < v.

Note that the feasible region {(x,y) € R” xR : ||x]|> <y} of the problem (RP) is
convex. Therefore, when A > 0, (RP) is a convex optimization problem and can
be solved efficiently by various methods, e.g., APG or projected Barzilai-Borwein
method (BBM) [2, 23]. Hence, from now on, we assume that the minimum eigen-
value of matrix A, denoted by 4,, is negative, i.e., 4; < 0. Consider the optimization
problem
3
nin - f06y) 1= IXT(A = M Dx+bTx+ 2y: + 2y

(CP)
subject to [|x||* < y.

Problem (CP) is a convex problem because f, is separable in x and y and is convex
in each of these two variables. The following theorem shows that problem (CRS) is
equivalent to problem (CP).

Theorem 1 Problem (CRS) is equivalent to (CP) in the following sense. First, the
two problems have the same optimal value. Second, if x* is an optimal solution to
(CRS), then (x*, ||x*||?) is an optimal solution to (CP). Third, if (%, %) is an optimal
solution to (CP), then an optimal solution to (CRS) is given by

A_{x if [|IX]1? = 3,

TEY R +ovif |72 < 3,

where { is a root of the quadratic equation ||X + {v||> =3 and v is an eigenvector
associated with A,.

Proof Denote by Val (CRS) and Val (CP) the optimal values of problems
(CRS) and (CP), respectively. We first observe that (CP) is a convex prob-
lem and satisfies the Slater condition. Assume that x* is an optimal solution to
(CRS). By using the optimality condition (2), we can easily show that the triplet
.y, 1) = (%, )12, 5 (pllx* || + 4))) satisfies the KKT system of (CP):

A
(A= ADx+b+2ux = 0 and gy%+?]—,u=0 3)

This implies that (x*, [|x*]|?) is an optimal solution to (CP) and that Val (CRS)
> Val (CP). On the other hand, because of the assumption 4; < 0 and the constraint
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llx]|?> < v, we have that Val (CRS) < Val (CP). Therefore, Val(CRS) = Val (CP). This
completes the proof of the first and second claims.

To prove the third claim, assume that (CP) has an optimal solution (%, ¥). Suppose
u is a Lagrangian multiplier associated with the constraint in (CP). If |¥]|?> = 7, from
the KKT system (3), we have that

AX— WX +b+2ux =0 4)
and

1 1

=p\y+ =4, —u=0.

5P y+2/11 U (%)

Equation (5) implies u = p\/§/2 +4,/2>0. This, together with |X||>=7
and AXx— A4 X+b+2ux =0, implies that AX+b+ Ax=0 and A+ A >0, for
A =2u— 4, = p||%||. Hence, due to (2), ¥ is also optimal for (CRS) and the objective
values of (CRS) and (CP) are the same due to ||X||> = 7.

Next, we consider the case of ||¥||? < . Let v be an eigenvector of matrix A asso-
ciated with the minimum eigenvalue 4,. By complementary slackness, = 0. Then,
equation (4) implies that »”v = 0. Hence, there exists ¢ such that ||X + ¢v|| = \/§
and (X + ¢{v,y) is still a solution to (CP). Using the same argument for the case of
||¥]|?> = %, we can show that X + ¢V is an optimal solution for (CRS). This completes
the proof. a

Optimization problems of the form

min X, h(x,y),
o gx,y) + h(x,y) (6)
where g is a smooth convex function and % is a non-smooth convex function, are
called convex composite minimization problems. Letting S = {(x,y) : lIx|I> < v},
problem (CP) can be written as a convex composite minimization problem:

min
xeR? ,yeIRf2 (X7 y) + lS (x’ y),

where 14 is the indicator function

. O, if(x’y)es’
1g(x,y) 1= { +00, otherwise.

General convex composite minimization problems (6) can be solved by many differ-
ent algorithms such as APG, BBM, proximal quasi-Newton methods [12] and proxi-
mal Newton methods [26]. In order to apply these methods, we need to efficiently
compute the proximal mapping with respect to the non-smooth function 4 in (6). In
our situation, i = 1y and hence the proximal mapping reduces to the orthogonal pro-
jection IT¢(x, y) onto the closed convex set S, i.e.,

Hs(x»Y) = argmin (x’,y’)eS”(x,»y/) - (st)”2~

The following theorem shows that such a projection can be done in O(n) time.
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Theorem 2 For any point (x,,y,) € R" X R, the projection I14(x,,y,) is given by

(xo,yo), if [lxol1* < v
= X -
T 5(xp, yo) 0 Yo + Ll , otherwise, ™
1+ p* 2

where y* is the unique solution in the interval [max{0, =2y}, 00) of the univariate
cubic equation

1 1
5#3+()’o+1)#2+<2)’0+§)/‘_xgx0+y0:0' ®)

Proof The case of x!x, <y, is trivial. So, we consider the case that x/x, > y,. The
projection is defined as the solution to the (strongly convex) optimization problem

. 2
min [|Ge.y) = (- v0) ||
©)
subject to [|x||* < y.
The KKT optimality condition of problem (9) can be written as
2(x —xp) +2ux =0, (10)
2y =2y, —nu=0,
u(llxl* =) =0,
) (1D
lIxll” <,
u=>0.

We have x = 1:_0;4 and y =y, + g from (10) and (11), respectively. Suppose that

u# = 0. The optimality condition reduces to x = x;, and y = y,, which contradicts to
the constraint ||x||> > y of problem (9). Therefore, we have > 0 and hence ||x||* = y
by complementary slackness. This leads to the univariate cubic equation

T
%o %o H
- = + =,
<1+,u> 1+u T3

which is equivalent to (8) and implies, in particular, that 2y, + ¢ > 0. Define

1 1
h(p) = 5/43 + (yy + Du® + <2y0 + E)M —xgxo + Y-
Since 2y, + ¢ > 0 and p > 0, the derivative i’ satisfies

> 1
2

N[ —

1
) = Sp + Qyy+ u+ Q2yg +2p) +

3 1
H(W) = 512 +200+ Du+ (200 +3 ) = 3

2
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Hence h(u) is strictly increasing on [max{0,—2y,},o0). Observing that
h(0) = yo — x} X < 0, h(=2y,) = —x{ x; < 0 and h(+00) = +o0, there exists exactly
one root in the interval [max{0, =2y, }, o0). Denote the solution of equation i(u) = 0
in this interval by u*. Then, we have

Xo 1
and =y, + —,
1+ pu* Y= 2

X =
which completes the proof. a

In practice, to find a root of the cubic equation (8) in the interval
[max {0, —2y,}, o), we use a hybrid method obtained by combining the bisection
method and the Newton’s method. Numerically, our hybrid method is faster and
more stable than the function roots in MATLAB. The projection can be done in
runtime O(n) as formulating the cubic equation cost O(n) and solving the univariate
cubic equation costs O(1).

3 Complexity to achieve an e-optimal solution of (CRS)
3.1 Another Equivalent Convex Reformulation

To achieve a theoretical complexity for solving convex composite optimization prob-
lem (6) with first-order methods such as APG [20], the function g is often required
to have a Lipschitz continuous gradient on its domain dom(g), i.e., there exists a
constant L > 0 such that

IVex) — VeIl < Lllx - yll, Vx,y € dom(g).

However, one can easily check that the gradient Vf, of the objective f, of (CP) is
not Lipschitz continuous at those points (x, y) with y = 0. To remedy this, instead of
(CP), we consider the following problem, which ensures y is bounded below from 0
by imposing an extra constrain y > [:

min X
YER" yeR f2( s )’)

(BCP)
subject to |Ix||> <y, y>1,

where [ = /1% / pzi To justify the choice of the lower bound / in (BCP), we note that
the function £y> + 2y is decreasing when \/§ < —4,/p. Therefore, any optimal
solution (%, ) of (CP) must satisfy # > (—=4,/p)*> = [, and hence problem (BCP) has
the same objective value and optimal solutions as problem (CP).

Problem (BCP) is again in the form of a convex composite minimization prob-
lem (6). Denote by B = {(x,y) e R" X R : x| < y,y > 1} the feasible region of
problem (BCP). The next theorem shows that the projection I1; onto the feasible
region B is again easily computable.
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Theorem 3 For any point (x,,y,) € R" X R, the projection Il z(x,y,) is given by

('xlay]) lfy] Zl’
Ty(x0.30) = (o, ) ify, < fand [lxoll < VI,
(\ﬂxo/”xo”’ [) otherwise,

where (x,y;) = H¢(xy, yy)-

Proof Let (x,,y,) be the projection of (xy,y,) onto B. If y, >1[, then
(x;,y;) = I (x4, y,) is the solution to the problem

min_ @) = G|

xeR"”,yeR

subject to ||x|> <y, y> L

Next, we consider the case of y; < /. In this case, we must have y, = [ since other-
wise (x,,,) is also the projection of (x,,y,) onto S, which contradicts with y, < [.
Hence, x, is actually the solution to the problem

. 2
min - lx—x

subject to ||x||* < L

We thus have the following two implications: if ||x,|| < \ﬁ, then x, = x,; and if
lxoll > \/—l, then x, = \/Zxo /lIxoll- This completes the proof. O

For Theorem 3, the projection onto B is as cheap as the projection onto S
because the former costs at most two more scalar comparisons, which are negli-
gible, than the latter (note that ||x,|| is already computed in the computation of the
projection onto S).

3.2 Asurrogate problem

When the dimension #n is high, the exact computation of the minimum eigen-
value is prohibitively expensive, if not impossible. For computational effi-
ciency, an approximate eigenvalue is preferred when only an approximate
solution of (CRS) is needed, which is often the case in practice. When an approx-
imate minimum eigenvalue § ~ 4, is used in the problem (BCP), the objec-
tive %xT(A —0Dx+bTx + §y5 + %y could be non-convex. Therefore, we need
to slightly modify the problem (BCP). Let the approximate minimum eigen-
value 0 satisfies 4, <0 < A, +¢€ and define n := -0+ €+ A, > 0. Noting that
—0 + ¢ = —4; + n (we will frequently use this equality in subsequent analysis), we
obtain the following problem as a surrogate problem to (CRS):
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i c= LT - Ty £y5 _ Z0%e
xeg}g}eu@ Sy = 5X A+(=O0+e)Dx+b x+2y? S

(SP)
subject to Ix|I> < v, y >1

where 1 = (-0 + €)%/ p2. To justify the lower bound I for y, we note that 2 yz - %y

is decreasing when y < 7, and hence 7 is a lower bound for any optimal y From now
on, we denote by B = {(x, y) . lIx|I> < v,y > 1} and (x", y") the feasible region and
an optimal solution to (SP), respectively. By Theorem 3, the feasible region B admits
an easily computable projection.

Our theoretical convergence rate of solving problem (CRS) is based on the surro-
gate problem (SP). Specifically, we shall specialize the backtracking line search ver-
sion of APG [3] to problem (SP) (see Algorithm 1) and show in Theorem 4 below
that the sequence of iterates converges sublinearly to an optimal solution of problem
(BCP) (which is also an optimal solution to problem (CP)). In view of Theorem 1,
a convergence rate for solving (CRS) is thus obtained. It should be pointed out that,
unlike the original APG, we reset the final solution returned by APG (in Lines 8—12
of Algorithm 1) to achieve an equal or smaller objective value (see the proof in
Theorem 4).

Remark 1f we directly use the approximate minimum eigenvalue 6 to replace the
exact minimum eigenvalue 4, in (BCP), we get the following problem:

. 1.7 T, P>, 0
min xX(A—=0Dx+b'x+Lty: + =
e ) 377 T Y

(AP)
subject to ||Ix|> <y, y > 1,

In Appendix A, we show that solving (AP) yields an approximate optimal solution
to (CRS) if e is sufficiently small, i.e., the eigenvalue computation is sufficiently
accurate. We also show in Appendix A that either all the stationary points, which
are approximate optimal solutions of (AP), share the same objective value, or there
is a unique stationary point that is the optimal solution of (AP) if —@ > 1, where 1
is some constant such that 2 < —A,. Note that when € < —4, — 4, we always have
that @ < A, + € < —1 and hence that — > 1. However, the constant 1 is unknown
a priori and hence our formulation (AP) may have a non-optimal stationary point
if we choose a 6 that is not close enough to A,. This is why we focus on (SP) in this
paper. Nevertheless, we will compare the empirical performance between (SP) and
(AP) in the numerical section.
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Algorithm 1 APG for (SP)

Input: f3, Vf3, Lo >0,£>1,¢>0,0<0, z0 € R" and yo € R.

1: choose 31 = ag = (xg,yo)T and t1 =1

2: for k=1,2,...,kmax do

3: find the smallest non-negative integer i;, such that L = &% Ly_; and

Fa(an) = fa(80) + Va8 (= 1) + 2l — Bl

where ay, = I (B — +V f3(Br))
4: set Ly = &% Ly_q
2
5 1+1/;+4tk
6 compute Bi1 = ag + (%ﬁ) (g — ag—1)
7: end for
8 if ag(n+1) > ||lag(l:n)||? and \/ar(n+1) > (=0 +¢)/p then
9: set xp = ap (1 : n) and y, = max{||ap (1 : n)||%, (=0 + €)?/p?}
10: else
11: set (xz,yk
12: end if

compute tp4q1 =

)T = o

3.2.1 Approximate computation of eigenpairs

To obtain an approximate eigenpair, we recall the Lanczos method for approximately
finding the minimum eigenvalue and its associated eigenvector [13]. The Lanczos
method achieves a fast complexity bound for eigenvalue computation [18] and is an
important component for proving complexity bounds for non-convex unconstrained
optimization in the literature [1, 8, 22]. The specific result on the Lanczos method
we need is the following lemma.

Lemma 1 ([18] and Lemma 9 in [22]) Let H be a symmetric matrix satisfying
|H|l, < Uy for some Uy > 0, where || - ||, denotes the operator 2-norm of a matrix,
and Ay its minimum eingenvalue. Suppose that the Lanczos procedure is applied to
find the largest eigenvalue of Uyl — H starting at a random vector distributed uni-
formly over the unit sphere. Then, for any ¢ > 0 and 6 € (0, 1), there is a probability
at least 1 — & that the procedure outputs a unit vector v such that vV Hv < A, + e in at

log(n/6%) [ U

most min { n, —=———==4/ = & iterations.
22 €

3.2.2 Convergence rate of APG for (SP)
We first collect some basic properties of APG.

Lemma 2 ([3, 20]) Consider a function G(x) = g(x) + h(x), where g is continuously
differentiable, convex function with the gradient Vg being L-Lipschitz continuous on
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its domain dom(g) and h is a proper, closed, and convex function that can possibly
be non-smooth. Let {x; }}2 | be the sequence generated by APG. Then, we have
28L||x* = xo|1?

Gx) —G* < w,

where x* is an optimal solution and G* is the optimal value of G(x). Equivalently, in
order to guarantee G(x;,) — G* < €, we need at most k = \/2EL||x* —)co||€‘1/2 -1
iterations.

Restricting the objective function f; in (SP) to the set B, the gradient Vf; is
then y-Lipschitz continuous, where

p
y =max < [|[A+(e—OI],, — p- (12)
{ ’ 4\/2}

Applying Lemma 2 to problem (SP) with g = f; and h = 13, we obtain that
Ly —f&" Yy <e

after at most k = v/2&y \/|[x" — x| + (" — yp)2e™"/2 — 1 iterations.

The next theorem shows that with probability at least 1 — 6, our algorithm
returns an e-approximate optimal solution to problem (CRS) using at most
O(e~'/?10g(n/8)) operations (including those in the approximate eigenpiar com-
putation and the APG).

Theorem 4 Let X* be the optimal solution set, (x",y") be any optimal solution to
problem (SP), R = inf, ey ||(x, ) — (xo, ¥o)| the initial distance to the optimal solu-
tion, (x*,y*) an optimal solution to problem (BCP) with ||x*||*> = y* (which always
exists) and (x;,y,) the solution returned by Algorithm 1, where k > 2EyRe™ V2 — 1
and y is as defined in (12). Define

%= Xis if||xk||2 = Vi
X + tv, otherwise,

where v is an approximate eigenvector that satisfies vVIAv < A, + € and ||v|| = 1, and
t is chosen such that t(v"Ax; + bTv + (= A, + nx[v) < 0 and ||x; + tv||* = y;, (which
also always exists). Then, we have

[® - fi&") < e+ (=4, +n)’e/p* = OCe),

where f is the objective function in (CRS). Furthermore, when the approximate
eigenpair is computed by the Lanczos method, the output is correct with probability
at least 1 — 6 and the total number of matrix-vector products is at most

1 52
26yRe™'? — 1 4+ g (n/5) 1/ ATl _ 0 (e log(n/9)).
24/2 €
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Proof Recall that f, and f; are the objective functions of (BCP) and (SP), respec-
tively. For any optimal solution x* of (CRS), (x*, ||x*||?) is an optimal solution of
(BCP). Therefore, an optimal solution (x*,y*) satisfying ||x*||> = y* always exists.
Let E, = f3(x;, y) — f3(x",y"). From Lemma 2, we obtain that f;(a;) — f;(x",y") < e.
If qy(n+1) > ||e(1 : n)||* and \/a,(n + 1) > (=4, +1)/p, we then go to Line 8
and Algorithm 1 outputs (x,,y,) instead of a,. The y-part of the objective function
frie.,
p 3 —O+e€

3T

Yy,

is increasing when ﬁ > (—60 +¢)/p, and hence Line 8 outputs a solution whose
objective value is at most f;(e;). Hence E, < € for all k > 1/2&yRe™"/? — 1. Using
this, we have

S0y —fz(X*,y*)
=130 ) — LY + G0 YT = 067,y + 65,5 = LG, yF)

M o 13
<E+0+ 2 (017 ~»7) (13)

=E,

where the inequality follows from the fact f;(x7, y") — f3(x*,y*) < 0 because (x", y")
is an optimal solution to (SP) and the last equality from the fact that ||x*||? = y*.

If ||x.||> = y,, we have that ¥ =x, and hence that f;(x;,y;) =f;(X). Substi-
tuting f53(x;,y;) =f1(%) to (13) and noting that f;(x*) = f,(x*,y*), we have that
£i® = fi(x*) < e. If||x, ||> < y;» we have ¥ = x; + tv with ||%]|? = y, and hence

J1) = f5300, yi)
= %(xk + ) A + tv) + b (x, + 1v) + §||(xk + rv)||3

1 p 3 A +7
- <§xZAxk + b+ 23+ —— (Il —yk))

—A 7 (14)
2

2
t
T Ax, + EvTAv + by — (Il lI* = llx, + 2v]|?)

2 A+
t(vTAxk +bTv) + %(/11 +e—n)— 1771 (—2tx{v - t2)

t(v Ax, + by + (=4, + U)XZV) +et?)2
€t2/2,

I\

where the third equality follows from v/ Av = 6 = 1, + € — 5 and the inequality from
1(vTAx; + bTv + (—A; + n)x]v) < 0. Note that a constant ¢ satisfying such an ine-
quality always exists. Indeed, since ||x;||*> < y;, the equation ||x, + #v||> = y, (in )
have two roots of opposite signs. Hence, we can always choose a ¢ such that
1(vTAx; + b"v + (—A; + n)x[v) < 0. Using the inequalities (13), (14) and the fact
that f,(x*) =fo(x*,y"), we get fi(0) —f,(x") < e+er?/2. Also, |l +ml* =y,

implies that 7 < [lx[| + 1/ < 2<%). Thus, we have
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~ _Al‘i‘r] 2 _Al+€ 2
fl(x)—fl(x*)5€+2€< p ) Se+2< P > €,

where the last inequality follows from0 <7 := -0+ 4, + e <e.
From Lemma 1, with probability at least 1 — 6, such 6 and v can be computed in

2
% % iterations. And Lemma 2 shows that the number of operations

required by Algorithm 1 is at most /2&yRe™'/? — 1. This completes the proof. O

at most

4 Numerical experiments

In this section, we first compare performance of our subproblem solver to the Krylov
subspace method on randomly generated instances whose matrix A in the quadratic
term has at least one negative eigenvalue. We then compare ARC [9] algorithms
with different subproblem solvers on test problems from the CUTEst collection [14].

4.1 Comparison for subproblem solvers

In this subsection, we compare the numerical performance between our methods
and the Krylov subspace method [9] using randomly generated instances. The prob-
lem instances are generated in the same manner as in [7], except that we replace
both the original diagonal matrix A and vector b by QTAQ and Q7 b, respectively to
make the problem more computationally involved and less trivial. The matrix Q is a
random block diagonal matrix (with #/K blocks) and each block is generated by the
MATLAB command orth (rand (K) ) with K being a positive integer. Note that
the random matrices generated in this manner are of full rank almost surely. As
pointed out in [7], by construction, the optimal values are —1 for all cases. Problems
with different dimensions n and different sparsity levels were tested. The sparsity of
matrix A is then K/n, i.e., a proportion K/n of the total entries are nonzero. For fixed
K and n, problems with different condition numbers x and eigen-gaps gap (to be
defined later) in the easy and hard cases were also tested, which are believed to
strongly affect the hardness of problem (CRS) and the Krylov subspace method [7].
In the easy case, we tested problems with the condition number k¥ = jlij, where 4,
is the largest eigenvalue of A and A* is the optimal Lagrangian multiplier, which is
an indicator for the hardness of the problem [7]. In the hard case, we tested problems
with different eigen-gap gap = 4, — 4, where 4, is the second smallest eigenvalue
of matrix A. All experiments were run on a Windows workshop with 16 Intel Xeon
W-2145 cores (3.70GHz) and 64GB of RAM.

The approximate eigenvalue in formulating the surrogate problem was computed
by the MATLAB function eigs. We found empirically that setting the tolerance (an
input argument of the MATLAB function eigs) to be 5/« in the easy case and 1076
in the hard case yields a reasonable trade-off between accuracy and efficiency. Both
(SP) and (AP) were tested. Besides APG, we have also applied BBM to solve the
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problems (SP) and (AP). For APG, we used a restarting strategy, which is a com-
mon method for speeding up the algorithm [16, 21]. For BBM, we used a simple
line search rule to guarantee the decrease of the objective function values. As we
know the optimal value is —1, we terminate our algorithm and the Krylov subspace
method? if the objective value is less than ~1+1e—6.

Tables 1, 2 and 3 show the performance comparison of our methods and the
Krylov subspace method. In the tables, BBM (AP) denotes the method that solves
problem (AP) by BBM; BBM (SP) denotes the method that solves problem (SP) by
BBM; APG (AP) denotes the method that solves problem (AP) by APG; APG (SP)
denotes the method that solves problem (SP) by APG; and Krylov denotes the
Krylov subspace methods for directly solving problem (CRS). In the tables, fval-
opt denotes the objective value accuracy, which is the objective value returned by
the algorithm minus the optimal value; iter denotes the iteration number of each
algorithm; time denotes the total time of each algorithm; t ime;, denotes the time
cost for approximately computing the minimum eigenvalue, which is O for the Kry-
lov subspace method.

From Tables 1 and 2 , we see that in the easy case, our methods achieved the
prescribed accuracy when x < 10* and were a bit slower than the Krylov subspace
method. All our four methods took more iterations and CPU time as the condition
number « increases, as expected. We also see that in our methods the eigenvalue
computation took about 1/3 to 1/2 of the total CPU time and the ratio of time,
over time becomes slightly smaller as the condition number increases. From
Table 3, we see that in the hard case, our methods performed much better than the
Krylov subspace method in terms of solution quality, iteration number and CPU
time. All our four methods took more iterations and CPU time as the eigen-gap «
increases, as expected. We also observe that the eigenvalue computation took more
than 2/3 of total time and the ratio of time,;, over time becomes larger if the eigen-
gap decreases. For the test problems with gap= 107%, the Krylov subspace method
attained the maximum time 500 seconds and failed to return a solution satisfying
the stopping criteria, while our methods sufficiently solved all the problems in less
than 10 seconds on average. As our methods always outperform the Krylov sub-
space method in the hard case, we do not report more results for the hard case. In
fact, the Krylov subspace method fails to find an approximate solution, while our
methods always find a good approximate solution with an accuracy 10-°. We also
notice that, in both the easy and hard cases, APG are slightly better than BBM, espe-
cially for instances with a large condition number, and each of APG and BBM has
a similar performance on solving (AP) and (SP). Comparing the ratio time;,/time,
we conclude that the two considered first-order methods performs on par in terms of
solving the surrogate problems (AP) and (SP). For future research, we would like to
develop more efficient methods for solving the surrogate problem.

2 The authors are indebted to Coralia Cartis for her kind sharing of the MATLAB codes for the Krylov
subspace method.
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4.2 Numerical tests on CUTEst problems

In this subsection, we compare the numerical performance of ARC algorithms [9]
implemented with different subproblem solvers on unconstrained test problems of the
CUTE:st collections.

Towards that end, we describe a variant of ARC, Algorithm 2, whose subprob-
lem solver is based on our reformulation. Denoting the function to minimize by F, in
each iteration, we compute an approximate solution for the cubic regularization model
function

) c
min my(s) = STBkS + gZS + ?kHS”S,
s

where B, is an approximation of the Hessian V2F(x,), g, = VF(x;) and o, is an
adaptive parameter. Suppose S is an arbitrary solver for (CRS) and A is an arbitrary
solver for the surrogate problem (AP). In our algorithm, we call A if the following
condition is met:

ligill < max (F(x,), 1) -e; and  A4,(By) < —e,, (15)

where €, and €, are some small positive real numbers and 4,(B,) is the minimum
eigenvalue of B;; and otherwise we call S to solve the model function directly. Con-
dition (15) is motivated by the facts that the Cauchy point is a good initial point
when the norm of the gradient is large and that the subproblem solver A is designed
for cases where B, at current iterate has at least one negative eigenvalue. We use the
Cauchy point [9] as an initial point:

c__.¢C c_ :
;= —o and ap = argmin ,ep m(—agy).

s
The (approximate) solution s, to the model function returned by the solver S or A is
accepted as the trial step if the model function value at s is smaller than that at the
Cauchy point sf; otherwise the Cauchy point s]f is used. From [9, Lemma 2.1], the
above choice of the trial step guarantees that our variant of ARC (Algorithm 2) con-
verges to a first-order stationary point (i.e., lim;_,  [|g;|| = 0) under some mild con-
ditions, e.g., F is a continuously differentiable function, ||g, — g; || = 0 whenever
llx, —x; || = O for any subsequences {z;} and {/;} of natural numbers and the norm
of the a'pproximate Hessian By, is upper bounded by some positive constant for all k.
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Algorithm 2 ARC using reformulation (AP)

Input: zg, 2 >7v1 >1, 1 >n2>m >0, and og > 0, for k =0, 1, ... until convergence
1: compute the Cauchy point skc
: if condition (15) is satisfied then
compute a trial step §; using A with an initial point (skC7 HskCH)
else
compute a trial step 5, using S with an initial point sf
end if
set

o = [ 5 if mu(sr) < ma(sf)
k sg otherwise

8: compute f(zk + sg) and
o = J(@x) — f(zk + sK)

—my(sk)
9: set
" _Jrptsgifpr>2m
k+1 =9 gy otherwise
10: set
(0, o%] if pr. > n2 (very successful iteration)
Okt1 € § ok, mok]  if m < pp < M2 (successful iteration)
[v10k,¥20)] otherwise (unsuccessful iteration)

We implemented two different subproblem solvers A in Algorithm 2. In our
implementation, if condition (15) is not satisfied, we still solve the original cubic
model (CRS) by BBM so that the effect of solving problem (CRS) via our refor-
mulation can be shown by comparing the overall time and solution quality. For the
cases where condition (15) is satisfied, we implemented both APG and BBM to
solve the surrogate problem (AP). We call the former ARC-RAPG and the latter
ARC-RBB. We compare our algorithms against the ARC algorithm in [9], denoted
by ARC-GLRT, where the subproblems are solved by the Krylov subspace method
and another ARC algorithm with subproblems solved by BBM, denoted by ARC-
BB, which is a simplified version of the algorithm in [4].

We tested medium-size (n € [500, 1500]) problems from the CUTEst collections
as in [4]. For condition (15), we set ¢, = 1072 and €, = 10, In our numerical tests,
we found that condition (15) is never met for some problems, and thus ARC-RAPG
and ARC-RBB reduce to ARC-BB. Therefore, we only report results on those
instances where condition (15) is satisfied in at lease one iteration. There are 20 such
instances. We implemented all the ARC algorithms in MATLAB 2017a. All the
experiments were run on a Macbook Pro laptop. The parameters in ARC are chosen
as described in [9]. We set B, = H, := V2F(x;) and the minimum eigenvalue of H,
is approximately computed by the MATLAB command eigs with tolerance 1e—4.
We terminate each ARC algorithm if either the iteration counter k reaches 5000 or
the stopping criteria

llgell < 1073 and A(H,) > ~1073

are met. In our test, all algorithms were terminated before iteration counter reaches
5000. When using APG to solve (AP) in ARC-RAPG, we again used the restarting
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strategy as in Section 4.1. For BBM to solve (AP) or (CRS) in ARC-BB, ARC-
RAPG and ARC-RBB, we used the simple line search rule to guarantee the decrease
of the objective function values as in Section 4.1. In all implementations, we termi-
nate the subproblem solver in each inner iteration when the iteration number of the
subproblem reaches 150, or the following stopping criterion is met:

IV (soll < minf 1, [Isell}HIgCell-

We report the numerical results for ARC-RAPG, ARC-RBB, ARC-GLRT and
ARC-BB in Table 4. The first column shows the name of the problem instance. The
number below the problem name represents its dimension. The column f* shows the
final objective function value. The columns n;, nq , 1y, n, and ng;, show the itera-
tion number, number of Hessian-vector products, number of function evaluations,
number of gradient evaluations and the number of eigenvalue computations. The
columns time, time;, and time,,,, show in seconds the overall CPU time, eigenvalue
computation time and difference between the last two, respectively. From Table 4,
we see that with our stopping criteria, the algorithms return the same final objective
values on almost all the problem instances (except the problem CHAINWOO). The
quantities n;, nyq, 1y, 1, and ng, of the four algorithms are comparable. From the
table, we see that ARC-GLRT slightly outperforms the other three algorithms. The
table also shows that for some problems, our methods ARC-RAPG and ARC-RBB
take much more CPU time than ARC-GLRT and ARC-BB. We found that this is
mainly because time;, is too large and dominates the total runtime in these prob-
lems. This can be further divided into two situations: either there are many eigen-
value computations, or the number of eigenvalue computations is small but each
eigenvalue computation takes a large amount of time (in these cases, the MATLAB
function eigs is difficult to converge, and we used eig instead to compute full
eigenvalues). Excluding the time to compute the eigenvalues, the actual times of the
four algorithms do not differ much, which is evidenced by the column time, .

To get more insights from the numerical tests, we also use performance pro-
files [10] to illustrate the experimental results in Figs. 1, 2 and 3. We note that,
although ARC-GLRT has the best performance, the iteration numbers and the
gradient evaluation numbers required by our algorithm are less than 2 times of
those by ARC-GLRT on over 90% of the tests, and the numbers of Hessian-vec-
tor products required by our algorithms are also less than 2 times of those by
ARC-GLRT on about 80% of the tests. We further note that ARC-RAPG, ARC-
RBB and ARC-BB have the similar performance in terms of iteration numbers
and gradient evaluations. We also plot the performance profiles on test problems
where algorithms require a CPU time of more than 1 second in Fig. 4. Compared
with the previous results, the gap between our algorithms and ARC-GLRT has
narrowed.

To see more advantages of our reformulation, we also investigate the numerical
results for all the 10 realizations with different initial points for each problem. In
Table 5, we report the number that ARC-RAPG or ARC-RBB outperforms ARC-
GLRT and ARC-BB out of the 10 realizations for each problem. We see that our
methods outperform ARC-GLRT and ARC-BB frequently in terms of iteration
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Performance profiles (iteration number)
T

L 1 L T 1 T
— — ARC-GLRT
/ / — — ARCBB | |
N ARC-RAPG
ARC-RBB

VI

Re) i
®

= |
(8]
C
(]
€

S |
=
(4]
c

- |
()]
=
>

Q b
<
[$]
@©
-

o -
2
E

3] -
Qo
Q
a

O 1 1 1 1 1 1 1 1 1
1 1.2 1.4 1.6 1.8 2 2.2 24 26 2.8 3

Ratio to best performance, 7

Fig. 1 Performance profiles for iteration number for ARC-GLRT, ARC-BB, ARC-RAPG and ARC-RBB
on the CUTEst problems

number, the numbers of Hessian-vector products and gradient evaluations. This
shows that our new reformulation may bring advantages in ARC algorithms.

5 Conclusion

In this paper, we developed a novel approach for solving the problem (CRS). We
first equivalently reformulate the problem (CRS) to a convex constrained opti-
mization problem, where the feasible region admits an easy projection and the
objective function is formed by using the minimum eigenvalue of the Hessian
matrix. To circumvent the expensive cost due to the exact computation of the
minimum eigenvalue, we then constructed a surrogate problem which is again a
convex constrained optimization problem with a feasible region that admits an
easy projection and can be solved by a variety of methods such as APG and BBM.
Furthermore, we proved that an e-approximate solution to (CRS) can be obtained
in at most O(e~'/?) matrix-vector multiplications if we use the Lanczos method
for approximate eigenvalue computation and APG to approximately solve the sur-
rogate problem. Numerical results showed that our methods are comparable to
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Performance profiles (gradient evaluation number)
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Fig. 2 Performance profiles for gradient evaluations for ARC-GLRT, ARC-BB, ARC-RAPG and ARC-
RBB on the CUTEst problems

the Krylov subspace method in the easy case and significantly outperform the
Krylov subspace method in the hard case. We also implemented variants of ARC
where the subproblem solver uses our approaches. The resulting ARC algorithms
showed good numerical performance on the problem instances from the CUTEst
datasets. As future work, we plan to investigate the complexity of cubic regu-
larization or ARC variants with subproblem solver based on our reformulations
for finding an approximate stationary point and local minimizer of smooth non-
convex minimization problems.

Analysis for problem (AP)

The purpose of this appendix is to show that when the approximate mini-
mum eigenvalue 8 of A is close enough to the exact minimum eigenvalue
A (4, £0 <-4 for some A defined in the following paragraphs), prob-
lem (AP) can be used to construct an approximate solution to (CRS). Define
B:={(xy) : |Ixl> <y, y>1}. We claim that the problem (AP) simplifies to
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Performance profiles (Hessian-vector product number)
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Fig. 3 Performance profiles for Hessian-vector products for ARC-GLRT, ARC-BB, ARC-RAPG and
ARC-RBB on the CUTEst problems

1 7 T 3 0
xg}llgIVlli.I;em Ea:l (A—0I)z +boTe+ gy% + Ey

subject to  ||z[|? < v,

3
i.e., the constraint y > [ is redundant. This is because when y < [/ in (AP,), §y5 + gy
is decreasing in y, and thus the optimal solution of (AP,) must satisfy y > I. We con-
sider the following two cases.

The hard case: Recall the optimality condition (2) for (CRS). Note that
(A + ADTB||> = A2/ p* < 0 and ||(A + AD)Th||> — A2/ p? is a decreasing function in
A, where () denotes the Moore—Penrose pseudoinverse, when A > — A, because we
are in the hard case [9]. First consider the case that ||[(A — 4,1)"b||* — 43/p* < 0.
Let A be the largest A € [0, —A,) such that |[(A + AD)Th||? — A2/p* = 0, if it exists.
If such 4 does not exist, we set A = 0. Using the fact ||(A + ADTH||> = A2/p* <0
for A > —A,, we have

2 —_
A+ ADTB|? - % <0, VA> 1. (16)
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Performance profiles (Hessian-vector product number)
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Fig.4 Performance profiles of Hessian-vector products for ARC-GLRT, ARC-BB, ARC-RAPG and
ARC-RBB on the CUTEst problems where algorithms require a CPU time more than 1 second

Suppose that 4, <@ < —4 and that (x?,y?) is an optimal solution of (APO)
Let u be the Lagrange multiplier corresponding to the constraint ||x9|| <y
Then, the KKT condition of (APy) implies Ax’ —6x% + b +2ux? =0 and
p\/_/2+9/2 u=0. Due to —0+2u> 1, we have |[x|?> <y’,Vu>0
from (16). Using the complementary slackness wu(||x?]|> —y?) =0, we have
that g =0. Thus, every possible stationary point of (AP;) can be writ-
ten as (x%,y) = (A -0D'b+1tv, (—0/p)?), where t is a scalar satisfying
Ix? + v < \/)7 . This in turn yields an approximate optimal solution x% 4 v
to (CRS), where one should note that different ¢ yields the same objective
value. Next, we consider the remaining case that [|(A + A,1)'b||> — A2/p* =0
This case is similar to the easy case, where we can recover an opti-
mal solution if 6 € [4,, —1), where 1 is the largest A € [0, —A;) such that
(A + ADTh||> = A%/ p* = 0. (If such A does not exist, we take A = 0.) The analysis
is similar to the easy case below and hence omitted here.

The easy case: Recall that in the easy case we have a unique optimal solution x*
satisfying p||x*|| > —4, and x* = (A + p||x*||])~'b; see, e.g., Theorem 3.1 in [9].
Let A be the largest A € [0,—A4,) such that h(4) := ||[(A + AD'h||> — A2/p* =0
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Table5 The number of times ARC-RAPG (or ARC-RBB) performs better than the other two algorithms
in 10 realizations with different initial points on each CUTEst problem, considering the number of itera-

tions, the number of Hessian-vector products and the number of gradient evaluations

Problem Index ARC-RAPG ARC-RBB
ARC-GLRT ARC-BB ARC-GLRT ARC-BB
BROYDN7D n; 6 4 6 0
- 4 3 4 2
n, 5 0 4 2
BRYBND n; 6 0 6 0
Mprod 4 4 4 3
n, 6 0 6 0
CHAINWOO n; 0 1 0 4
Moo 0 0 0 6
n, 0 2 0 3
DIXMAANF n; 8 1 9 2
Morod 5 3 7 6
n, 9 2 9 3
DIXMAANG n; 3 1 3 1
- 3 2 3 5
n, 3 1 3 1
DIXMAANH n; 5 1 5 3
Mprod 3 1 4 6
n, 4 2 5 2
DIXMAANIJ n; 2 2 2 4
Moo 8 3 8 5
n, 4 2 2 0
DIXMAANK n; 1 1 0 3
Morod 3 3 6 6
n, 2 2 0 0
DIXMAANL n; 1 2 1 4
Tirod 4 3 6 4
n, 2 3 0 2
EXTROSNB n; 10 4 10 2
Mprod 0 4 0 2
n, 9 7 10 7
FLETCHCR n; 6 5 4 1
Moo 2 3 1 2
n, 3 4 2 1
FREUROTH n; 7 7 6 4
Morod 0 6 0 6
n, 6 6 4 5
GENHUMPS n; 10 1 10 2
Mirod 10 0 10 0
n 10 1 10 2
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Table 5 (continued)

Problem Index ARC-RAPG ARC-RBB
ARC-GLRT ARC-BB ARC-GLRT ARC-BB
GENROSE n 3 6 2 5
Movod 0 2 2 5
n, 2 7 1 6
NONCVXU2 n 0 7 0 2
- 6 8 7 5
n, 0 7 0 4
NONCVXUN n 0 3 0 2
Morod 2 3 2 2
n, 0 3 0 2
OSCIPATH n 0 1 0 3
Morod 2 1 4 3
n, 0 2 0 5
TOINTGSS n 4 2 3 0
Movod 0 2 0 0
n, 4 3 3 0
TQUARTIC n 2 5 2 2
- 0 1 0 2
n, 3 5 0 2
WOODS n 0 5 0 5
Morod 0 2 0 5
n 0 4 0 3

if it exists. If such A does not exist, we take A = 0. Then for all 1 € (4,—41,),
h(4) >0 as lim;_,_; h(A) = +oco0. This, together with the definition of A and
the fact that h(4) is a decreasing function on (—4,, +o0), implies that there is
only one point, denoting 1 in (1, +o0) satisfying [[(A + AD'b||?> — A>/p*> = 0.
Let X = (A + AI)"b. The optimality condition (2) implies that ¥ is the unique
optimal solution of (CRS). We again suppose that 4, <8 < —A. If § = 1,
(AP,) reduces to the exact reformulation (CP). Next, we consider the case
that A, < # < —A. Assuming that u = 0, the inequality 4, < @ < —A implies
that ||x]| = ||(A — 6D)b|| > \/y? = —0/p, which violates the constraint
Ix]l*> < y. Hence, we must have u > 0, and thus we always have x| = \/)7,
ie., [[(A+ (=8 + wD)'b|| = (=0 + u)/p. This implies —0 + u = A*. That is, we
recover the optimal solution if § < —4.
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