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Abstract
We propose a first-order method to solve the cubic regularization subproblem (CRS) 
based on a novel reformulation. The reformulation is a constrained convex optimi-
zation problem whose feasible region admits an easily computable projection. Our 
reformulation requires computing the minimum eigenvalue of the Hessian. To avoid 
the expensive computation of the exact minimum eigenvalue, we develop a surro-
gate problem to the reformulation where the exact minimum eigenvalue is replaced 
with an approximate one. We then apply first-order methods such as the Nester-
ov’s accelerated projected gradient method (APG) and projected Barzilai-Borwein 
method to solve the surrogate problem. As our main theoretical contribution, we 
show that when an �-approximate minimum eigenvalue is computed by the Lanczos 
method and the surrogate problem is approximately solved by APG, our approach 
returns an �-approximate solution to CRS in Õ(𝜖−1∕2) matrix-vector multiplica-
tions (where Õ(⋅) hides the logarithmic factors). Numerical experiments show that 
our methods are comparable to and outperform the Krylov subspace method in the 
easy and hard cases, respectively. We further implement our methods as subproblem 
solvers of adaptive cubic regularization methods, and numerical results show that 
our algorithms are comparable to the state-of-the-art algorithms.
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1 Introduction

Motivated by applications in machine learning and signal processing, optimization 
problems of the following form have attracted significant attention:

where F is a twice continuously differentiable function that is possibly non-convex. 
The cubic regularization method [9, 19] is among the most successful algorithms for 
solving problem (1). At each iteration of the cubic regularization method, the sub-
problem takes the form

where ‖⋅‖ denotes the Euclidean norm, A is an n × n symmetric matrix (not nec-
essarily positive semidefinite) and � is a regularization parameter. In particular, A 
and b represent the Hessian and gradient of the function F at the current iterate, 
respectively. It was first proved by Nesterov and Polyak [19] that the cubic regu-
larization method enjoys an iteration complexity of O(�−3∕2) if each subproblem is 
solved exactly. Cartis et al. [9] developed a generalization of the cubic regulariza-
tion method, called ARC, which allows the subproblems to be solved inexactly and 
the regularization parameter 𝜌 > 0 to be chosen adaptively. In the same paper, they 
showed that the iteration complexity of ARC is again O(�−3∕2) . Complementing to 
these global complexity results, Yue et  al. [25] showed that the cubic regulariza-
tion method enjoys a local quadratic convergence rate under an error bound-type 
condition.

Despite the above strong theoretical guarantees, the practical performance of 
the cubic regularization method depends critically on the efficiency of solving its 
subproblems. As such, there have been considerable endeavors on developing fast 
algorithms for solving (CRS). One of the most successful algorithms for solv-
ing large–scale instances of (CRS) in practice is the Krylov subspace method [9]. 
Carmon and Duchi [7] provided the first the convergence rate analysis of the Kry-
lov subspace method. In particular, they showed that the Krylov subspace method 
achieves an �-approximate optimal solution in O(�−1∕2) or O(

√
� log �−1) operations 

(matrix-vector multiplications) in the easy case1, where � is the condition number 
of (CRS). Unfortunately, the Krylov subspace method may fail to converge to the 
optimal solution when the problem (CRS) is in the hard case or close to being in the 
hard case [7]. Carmon and Duchi also showed in another paper [6] that the gradient 
descent method is able to converge to the global minimizer if the step size is suf-
ficiently small, and the convergence rate is Õ(𝜖−1) (where Õ(⋅) hides the logarith-
mic factors). Although, for the problem (CRS), the convergence rate of the gradi-
ent descent method is worse than that of the Krylov subspace method, it works in 

(1)min
x∈ℝn

F(x),

(CRS)min
x∈ℝn

f1(x) ∶=
1

2
xTAx + bTx +

�

3
‖x‖3,

1 For the problem (CRS), it is said to be in the easy if the optimal solution x∗ satisfies 𝜌‖x∗‖ > −𝜆
1
 , 

where �
1
 is the minimum eigenvalue of A, and hard case otherwise.
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both the easy and hard cases. On the other hand, based on the cubic regularization 
method, Agarwal et al. [1] derived an algorithm with Õ(𝜖−7∕4) operations for finding 
an approximate local minimum of problem (1), i.e., a point x ∈ ℝ

n satisfying

where I denotes the identity matrix of appropriate dimension and, for any symmetric 
matrix M, the inequality M ⪰ 0 means that M is positive semidefinite. A key com-
ponent of their result is an algorithm for computing an approximate solution to the 
problem (CRS) in Õ(𝜖−1∕4) operations. However, the approximate solution returned 
by this algorithm is not an �-approximate global minimizer of the problem (CRS) 
in the traditional sense (see [1 Theorem 2] for details). Furthermore, the algorithm 
in [1] for solving (CRS) requires sophisticated parameter tuning, and no numeri-
cal results had been provided in the paper. Finally, a Newton-like method for solv-
ing problems of the form (1) had been recently developed by Birgin and Martínez 
[5]. Each subproblem of their algorithm, which is similar to but not the same as 
(CRS), is constructed and can be efficiently solved by using the so-called mixed fac-
torization (see [5, Sect. 2] for details) of the (approximate) Hessian of F at the cur-
rent point. Birgin and Martínez [5] advocated in particular the mixed factorization 
obtained from the Bunch-Parlett-Kaufman factorization [13], a matrix factorization 
whose computational cost is similar to that of the Cholesky factorization.

From the above discussion, it is desirable to have an algorithm for solving the 
problem (CRS) that works efficiently in practice for both the hard and easy cases 
and enjoys theoretical guarantees. In this paper, we achieve this goal by developing 
a first-order method for solving arbitrary instances of (CRS) with Õ(𝜖−1∕2) matrix-
vector multiplications. Our approach is based on a novel reformulation of the prob-
lem (CRS), which is a constrained convex optimization problem built using the min-
imum eigenvalue of the matrix A. The feasible region of the reformulation admits 
an efficient, closed-form projection. Therefore, when the exact computation of the 
minimum eigenvalue is viable, we can apply any algorithm for solving constrained 
convex optimization problems to solve the reformulation to global optimality. The 
optimal solution to the problem (CRS) can then be constructed by using the opti-
mal solution of the reformulation. In practice, it is often prohibitively expensive to 
compute the exact minimum eigenvalue of the matrix A, if not impossible. We cir-
cumvent this limitation by developing a surrogate problem to the reformulation. The 
surrogate problem is again a constrained convex optimization problem with an eas-
ily computable projection onto its feasible region. More importantly, the surrogate 
problem requires only an approximate minimum eigenvalue, which can be computed 
efficiently by using, e.g., the Lanczos method [13]. Similarly, an �-approximate opti-
mal solution of the problem (CRS) can be constructed from an �-approximate solu-
tion of the surrogate problem.

The said bound Õ(𝜖−1∕2) on the number of operations is proved by combining the 
follow two ideas. First, for any � ∈ (0, 1) , the Lanczos method returns an �-approxi-
mate minimum eigenvalue in O(�−1∕2 log(n∕�)) matrix-vector multiplications with 
probability at least 1 − � . Second, solving the surrogate problem by the Nesterov’s 
accelerated projected gradient descent method [3, 20] (APG) requires O(�−1∕2) 

‖∇F(x)‖ ≤ � and ∇2F(x) +
√
�I ⪰ 0,
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iterations, where each iteration consists of one gradient and Hessian evaluations and 
one matrix-vector multiplication. Therefore, the total number of operations of our 
method is bounded by O(�−1∕2 log(n∕�)) (see Theorem 4). This bound is similar to 
the sublinear bound for the Krylov subspace method proved in [7] in the easy case 
and better than that of the gradient descent method in [6]. Note also that our bound 
is for the subproblem and hence not directly comparable with that of [1]. Besides, 
our algorithm has the advantage that it is easily implementable. Furthermore, as 
we shall see in our numerical section, the proposed algorithm works efficiently in 
practice for high-dimensional problems—our algorithm shows a comparable perfor-
mance to the Krylov subspace method in the easy case. An another advantage of our 
algorithm is that, unlike the Krylov subspace method, it works in both the easy and 
hard cases. This saves us from the computational overhead due to the need of detect-
ing the hard case.

We remark that our approach is inspired by the recent line of research [15, 24] on 
linear-time algorithms for the trust region subproblem

and the close resemblance between the problems (CRS) and (TRS). More specifi-
cally, the algorithms in [15, 24] are based on a convex reformulation for the (TRS) 
derived in [11]. Motivated by the works [15, 24], Jiang and Li [17] recently derived 
a novel convex reformulation for the generalized trust region subproblem, which 
further inspires us to explore hidden convexity for (CRS) in this paper. It should also 
be pointed out that our reformulation and its surrogate problem offer great potential 
and flexibility for the design of fast algorithms to solve the problem (CRS). Indeed, 
one can apply any algorithm for constrained convex optimization problems to solve 
these two optimization problems. Proving theoretical guarantees for other algo-
rithms for solving these two models is left as a future research.

The remaining of this paper is organized as follows. In Sect.  2, we derive our 
convex reformulation based on the minimum eigenvalue of matrix A and discuss 
the computation of the projection to its feasible region. In Sect. 3, we present a sur-
rogate problem for (CRS) and theoretically analyze the complexity of our method 
when applying the APG to solve the surrogate problem with an approximate mini-
mum eigenvalue computed by the Lanczos method. In Sect. 4, we first compare the 
numerical performance of our methods with the Krylov subspace method and then 
compare our methods against others as a subproblem solver for ARC. We conclude 
our paper in Sect. 5.

2  Convex reformulation

We first record the optimality condition of (CRS) [9, 19], which is given by the fol-
lowing system of equations in x and �:

(TRS)
min
x∈ℝn

1

2
xTAx + bTx

subject to ‖x‖2 ≤ 1,
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This optimality condition will be frequently used in this paper. It is obvious that 
(CRS) is equivalent to the following problem:

Note that the feasible region {(x, y) ∈ ℝ
n ×ℝ ∶ ‖x‖2 ≤ y} of the problem (RP) is 

convex. Therefore, when A ⪰ 0 , (RP) is a convex optimization problem and can 
be solved efficiently by various methods, e.g., APG or projected Barzilai-Borwein 
method (BBM) [2, 23]. Hence, from now on, we assume that the minimum eigen-
value of matrix A, denoted by �1 , is negative, i.e., 𝜆1 < 0 . Consider the optimization 
problem

Problem (CP) is a convex problem because f2 is separable in x and y and is convex 
in each of these two variables. The following theorem shows that problem (CRS) is 
equivalent to problem (CP).

Theorem 1 Problem (CRS) is equivalent to (CP) in the following sense. First, the 
two problems have the same optimal value. Second, if x∗ is an optimal solution to 
(CRS), then (x∗, ‖x∗‖2) is an optimal solution to (CP). Third, if (x̃, ỹ) is an optimal 
solution to (CP), then an optimal solution to (CRS) is given by

where � is a root of the quadratic equation ‖x̃ + 𝜁v‖2 = ỹ and v is an eigenvector 
associated with �1.

Proof Denote by Val (CRS) and Val (CP) the optimal values of problems 
(CRS) and (CP), respectively. We first observe that (CP) is a convex prob-
lem and satisfies the Slater condition. Assume that x∗ is an optimal solution to 
(CRS). By using the optimality condition (2), we can easily show that the triplet 
(x, y,�) = (x∗, ‖x∗‖2, 1

2
(�‖x∗‖ + �1)) satisfies the KKT system of (CP):

This implies that (x∗, ‖x∗‖2) is an optimal solution to (CP) and that Val (CRS) 
≥ Val (CP). On the other hand, because of the assumption 𝜆1 < 0 and the constraint 

(2)Ax + b + �x = 0, A + �I ⪰ 0, and � = �‖x‖.

(RP)
min

x∈ℝn,y∈ℝ

1

2
xTAx + bTx +

�

3
y

3

2

subject to ‖x‖2 ≤ y.

(CP)
min

x∈ℝn,y∈ℝ
f2(x, y) ∶=

1

2
xT (A − �1I)x + bTx +

�

3
y

3

2 +
�1

2
y

subject to ‖x‖2 ≤ y.

x̂ =

�
x̃ if ‖x̃‖2 = ỹ,

x̃ + 𝜁v if ‖x̃‖2 < ỹ,

(3)(A − �1I)x + b + 2�x = 0 and
�

2
y

1

2 +
�1

2
− � = 0
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‖x‖2 ≤ y , we have that Val (CRS) ≤ Val (CP). Therefore, Val(CRS) = Val (CP). This 
completes the proof of the first and second claims.

To prove the third claim, assume that (CP) has an optimal solution (x̃, ỹ) . Suppose 
� is a Lagrangian multiplier associated with the constraint in (CP). If ‖x̃‖2 = ỹ , from 
the KKT system (3), we have that

and

Equation  (5) implies 𝜇 = 𝜌

√
ỹ∕2 + 𝜆1∕2 ≥ 0 . This, together with ‖x̃‖2 = ỹ 

and Ax̃ − 𝜆1x̃ + b + 2𝜇x̃ = 0 , implies that Ax̃ + b + �̄�x̃ = 0 and A + �̄�I ⪰ 0 , for 
�̄� = 2𝜇 − 𝜆1 = 𝜌‖x̃‖. Hence, due to (2), x̃ is also optimal for (CRS) and the objective 
values of (CRS) and (CP) are the same due to ‖x̃‖2 = ỹ.

Next, we consider the case of ‖x̃‖2 < ỹ . Let v be an eigenvector of matrix A asso-
ciated with the minimum eigenvalue �1 . By complementary slackness, � = 0 . Then, 
equation  (4) implies that bTv = 0 . Hence, there exists � such that ‖x̃ + 𝜁v‖ =

√
ỹ 

and (x̃ + 𝜁v, ỹ) is still a solution to (CP). Using the same argument for the case of 
‖x̃‖2 = ỹ , we can show that x̃ + 𝜁v is an optimal solution for (CRS). This completes 
the proof.   ◻

Optimization problems of the form

where g is a smooth convex function and h is a non-smooth convex function, are 
called convex composite minimization problems. Letting S = {(x, y) ∶ ‖x‖2 ≤ y} , 
problem (CP) can be written as a convex composite minimization problem:

where �S is the indicator function

General convex composite minimization problems (6) can be solved by many differ-
ent algorithms such as APG, BBM, proximal quasi-Newton methods [12] and proxi-
mal Newton methods [26]. In order to apply these methods, we need to efficiently 
compute the proximal mapping with respect to the non-smooth function h in (6). In 
our situation, h = �S and hence the proximal mapping reduces to the orthogonal pro-
jection �S(x, y) onto the closed convex set S, i.e.,

The following theorem shows that such a projection can be done in O(n) time.

(4)Ax̃ − 𝜆1x̃ + b + 2𝜇x̃ = 0

(5)
1

2
𝜌

√
ỹ +

1

2
𝜆1 − 𝜇 = 0.

(6)min
x∈ℝn,y∈ℝ

g(x, y) + h(x, y),

min
x∈ℝn,y∈ℝ

f2(x, y) + �S(x, y),

�S(x, y) ∶=

{
0, if (x, y) ∈ S,

+∞, otherwise.

�S(x, y) = argmin (x�,y�)∈S‖(x�, y�) − (x, y)‖2.
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Theorem 2 For any point (x0, y0) ∈ ℝ
n ×ℝ , the projection �S(x0, y0) is given by

where �∗ is the unique solution in the interval [max{0,−2y0},∞) of the univariate 
cubic equation

Proof The case of xT
0
x0 ≤ y0 is trivial. So, we consider the case that xT

0
x0 > y0 . The 

projection is defined as the solution to the (strongly convex) optimization problem

The KKT optimality condition of problem (9) can be written as

We have x = x0

1+�
 and y = y0 +

�

2
 from (10) and (11), respectively. Suppose that 

� = 0 . The optimality condition reduces to x = x0 and y = y0 , which contradicts to 
the constraint ‖x‖2 > y of problem (9). Therefore, we have 𝜇 > 0 and hence ‖x‖2 = y 
by complementary slackness. This leads to the univariate cubic equation

which is equivalent to (8) and implies, in particular, that 2y0 + � ≥ 0 . Define

Since 2y0 + � ≥ 0 and � ≥ 0 , the derivative h′ satisfies

(7)�S(x0, y0) =

⎧
⎪⎨⎪⎩

�
x0, y0

�
, if ‖x0‖2 ≤ y0,�

x0

1 + �∗
, y0 +

�
∗

2

�
, otherwise,

(8)
1

2
�
3 + (y0 + 1)�2 +

(
2y0 +

1

2

)
� − xT

0
x0 + y0 = 0.

(9)
min

x∈ℝn,y∈ℝ

��(x, y) − (x0, y0)
��2

subject to ‖x‖2 ≤ y.

(10)2(x − x0) + 2�x = 0,

(11)

2y − 2y0 − � = 0,

�(‖x‖2 − y) = 0,

‖x‖2 ≤ y,

� ≥ 0.

(
x0

1 + �

)T
x0

1 + �
= y0 +

�

2
,

h(�) =
1

2
�
3 + (y0 + 1)�2 +

(
2y0 +

1

2

)
� − xT

0
x0 + y0.

h�(�) =
3

2
�
2 + 2(y0 + 1)� +

(
2y0 +

1

2

)
=

1

2
�
2 + (2y0 + �)� + (2y0 + 2�) +

1

2
≥

1

2
.
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Hence h(�) is strictly increasing on [max{0,−2y0},∞) . Observing that 
h(0) = y0 − xT

0
x0 < 0 , h(−2y0) = −xT

0
x0 < 0 and h(+∞) = +∞ , there exists exactly 

one root in the interval [max{0,−2y0},∞) . Denote the solution of equation h(�) = 0 
in this interval by �∗ . Then, we have

which completes the proof.   ◻

In practice, to find a root of the cubic equation (8) in the interval 
[max{0,−2y0},∞) , we use a hybrid method obtained by combining the bisection 
method and the Newton’s method. Numerically, our hybrid method is faster and 
more stable than the function roots in MATLAB. The projection can be done in 
runtime O(n) as formulating the cubic equation cost O(n) and solving the univariate 
cubic equation costs O(1).

3  Complexity to achieve an �‑optimal solution of (CRS)

3.1  Another Equivalent Convex Reformulation

To achieve a theoretical complexity for solving convex composite optimization prob-
lem (6) with first-order methods such as APG [20], the function g is often required 
to have a Lipschitz continuous gradient on its domain dom(g) , i.e., there exists a 
constant L > 0 such that

However, one can easily check that the gradient ∇f2 of the objective f2 of (CP) is 
not Lipschitz continuous at those points (x, y) with y = 0 . To remedy this, instead of 
(CP), we consider the following problem, which ensures y is bounded below from 0 
by imposing an extra constrain y ≥ l:

where l = �
2
1
∕�2 . To justify the choice of the lower bound l in (BCP), we note that 

the function �
3
y

3

2 +
�1

2
y is decreasing when 

√
y ≤ −�1∕� . Therefore, any optimal 

solution (x̃, ỹ) of (CP) must satisfy ỹ ≥ (−𝜆1∕𝜌)
2 = l , and hence problem (BCP) has 

the same objective value and optimal solutions as problem (CP).
Problem (BCP) is again in the form of a convex composite minimization prob-

lem  (6). Denote by B = {(x, y) ∈ ℝ
n ×ℝ ∶ ‖x‖2 ≤ y, y ≥ l} the feasible region of 

problem (BCP). The next theorem shows that the projection �B onto the feasible 
region B is again easily computable.

x =
x0

1 + �∗
and y = y0 +

�
∗

2
,

‖∇g(x) − ∇g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ dom(g).

(BCP)
min

x∈ℝn,y∈ℝ
f2(x, y)

subject to ‖x‖2 ≤ y, y ≥ l,
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Theorem 3 For any point (x0, y0) ∈ ℝ
n ×ℝ , the projection �B(x0, y0) is given by

where (x1, y1) = �S(x0, y0).

Proof Let (x2, y2) be the projection of (x0, y0) onto B. If y1 ≥ l , then 
(x1, y1) = �S(x0, y0) is the solution to the problem

Next, we consider the case of y1 < l . In this case, we must have y2 = l since other-
wise (x2, y2) is also the projection of (x0, y0) onto S, which contradicts with y1 < l . 
Hence, x2 is actually the solution to the problem

We thus have the following two implications: if ‖x0‖ <

√
l , then x2 = x0 ; and if 

‖x0‖ ≥

√
l , then x2 =

√
lx0∕‖x0‖ . This completes the proof.   ◻

For Theorem  3, the projection onto B is as cheap as the projection onto S 
because the former costs at most two more scalar comparisons, which are negli-
gible, than the latter (note that ‖x0‖ is already computed in the computation of the 
projection onto S).

3.2  A surrogate problem

When the dimension n is high, the exact computation of the minimum eigen-
value is prohibitively expensive, if not impossible. For computational effi-
ciency, an approximate eigenvalue is preferred when only an approximate 
solution of (CRS) is needed, which is often the case in practice. When an approx-
imate minimum eigenvalue � ≈ �1 is used in the problem (BCP), the objec-
tive 1

2
xT (A − �I)x + bTx +

�

3
y

3

2 +
�

2
y could be non-convex. Therefore, we need 

to slightly modify the problem (BCP). Let the approximate minimum eigen-
value � satisfies �1 ≤ � ≤ �1 + � and define � ∶= −� + � + �1 ≥ 0. Noting that 
−� + � = −�1 + � (we will frequently use this equality in subsequent analysis), we 
obtain the following problem as a surrogate problem to (CRS):

𝛱B(x0, y0) =

⎧
⎪⎨⎪⎩

(x1, y1) if y1 ≥ l,

(x0, l) if y1 < land ‖x0‖ <

√
l,

(
√
lx0∕‖x0‖, l) otherwise,

min
x∈ℝn,y∈ℝ

��(x, y) − (x0, y0)
��2

subject to ‖x‖2 ≤ y, y ≥ l.

min
x∈ℝn

��x − x0
��2

subject to ‖x‖2 ≤ l.
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where l̂ = (−𝜃 + 𝜖)2∕𝜌2 . To justify the lower bound l̂ for y, we note that �
3
y

3

2 −
−�+�

2
y 

is decreasing when y ≤ l̂ , and hence l̂ is a lower bound for any optimal y. From now 
on, we denote by B̂ ∶= {(x, y) ∶ ‖x‖2 ≤ y, y ≥ l̂} and (x� , y�) the feasible region and 
an optimal solution to (SP), respectively. By Theorem 3, the feasible region B̂ admits 
an easily computable projection.

Our theoretical convergence rate of solving problem (CRS) is based on the surro-
gate problem (SP). Specifically, we shall specialize the backtracking line search ver-
sion of APG [3] to problem (SP) (see Algorithm 1) and show in Theorem 4 below 
that the sequence of iterates converges sublinearly to an optimal solution of problem 
(BCP) (which is also an optimal solution to problem (CP)). In view of Theorem 1, 
a convergence rate for solving (CRS) is thus obtained. It should be pointed out that, 
unlike the original APG, we reset the final solution returned by APG (in Lines 8–12 
of Algorithm  1) to achieve an equal or smaller objective value (see the proof in 
Theorem 4).

Remark If we directly use the approximate minimum eigenvalue � to replace the 
exact minimum eigenvalue �1 in (BCP), we get the following problem:

In Appendix A, we show that solving (AP) yields an approximate optimal solution 
to (CRS) if � is sufficiently small, i.e., the eigenvalue computation is sufficiently 
accurate. We also show in Appendix A that either all the stationary points, which 
are approximate optimal solutions of (AP), share the same objective value, or there 
is a unique stationary point that is the optimal solution of (AP) if −𝜃 > �̄� , where �̄� 
is some constant such that �̄� < −𝜆1 . Note that when 𝜖 ≤ −𝜆1 − �̄� , we always have 
that 𝜃 < 𝜆1 + 𝜖 < −�̄� and hence that −𝜃 > �̄� . However, the constant �̄� is unknown 
a priori and hence our formulation (AP) may have a non-optimal stationary point 
if we choose a � that is not close enough to �1 . This is why we focus on (SP) in this 
paper. Nevertheless, we will compare the empirical performance between (SP) and 
(AP) in the numerical section.

(SP)
min

x∈ℝn,y∈ℝ
f3(x, y) ∶=

1

2
xT (A + (−𝜃 + 𝜖)I)x + bTx +

𝜌

3
y

3

2 −
−𝜃+𝜖

2
y

subject to ‖x‖2 ≤ y, y ≥ l̂,

(AP)
min

x∈ℝn,y∈ℝ

1

2
xT (A − �I)x + bTx +

�

3
y

3

2 +
�

2
y

subject to ‖x‖2 ≤ y, y ≥ l,
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3.2.1  Approximate computation of eigenpairs

To obtain an approximate eigenpair, we recall the Lanczos method for approximately 
finding the minimum eigenvalue and its associated eigenvector [13]. The Lanczos 
method achieves a fast complexity bound for eigenvalue computation [18] and is an 
important component for proving complexity bounds for non-convex unconstrained 
optimization in the literature [1, 8, 22]. The specific result on the Lanczos method 
we need is the following lemma.

Lemma 1 ([18] and Lemma 9 in [22]) Let H be a symmetric matrix satisfying 
‖H‖2 ≤ UH for some UH > 0 , where ‖ ⋅ ‖2 denotes the operator 2-norm of a matrix, 
and �1 its minimum eingenvalue. Suppose that the Lanczos procedure is applied to 
find the largest eigenvalue of UHI − H starting at a random vector distributed uni-
formly over the unit sphere. Then, for any 𝜖 > 0 and � ∈ (0, 1) , there is a probability 
at least 1 − � that the procedure outputs a unit vector v such that vTHv ≤ �1 + � in at 

most min

�
n,

log(n∕�2)

2
√
2

�
UH

�

�
 iterations.

3.2.2  Convergence rate of APG for (SP)

We first collect some basic properties of APG.

Lemma 2 ([3, 20]) Consider a function G(x) = g(x) + h(x) , where g is continuously 
differentiable, convex function with the gradient ∇g being L-Lipschitz continuous on 
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its domain dom(g) and h is a proper, closed, and convex function that can possibly 
be non-smooth. Let {xk}∞k=1 be the sequence generated by APG. Then, we have

where x∗ is an optimal solution and G∗ is the optimal value of G(x). Equivalently, in 
order to guarantee G(xk) − G∗ ≤ � , we need at most k =

√
2�L‖x∗ − x0‖�−1∕2 − 1 

iterations.

Restricting the objective function f3 in (SP) to the set B̂ , the gradient ∇f3 is 
then �-Lipschitz continuous, where

Applying Lemma 2 to problem (SP) with g = f3 and h = 𝜄B̂ , we obtain that

after at most k =
√
2��

√‖x� − x0‖2 + (y� − y0)
2�

−1∕2 − 1 iterations.
The next theorem shows that with probability at least 1 − � , our algorithm 

returns an �-approximate optimal solution to problem (CRS) using at most 
O(�−1∕2 log(n∕�)) operations (including those in the approximate eigenpiar com-
putation and the APG).

Theorem  4 Let X∗ be the optimal solution set, (x� , y�) be any optimal solution to 
problem (SP), R = inf(x,y)∈X∗ ‖(x, y) − (x0, y0)‖ the initial distance to the optimal solu-
tion, (x∗, y∗) an optimal solution to problem (BCP) with ‖x∗‖2 = y∗ (which always 
exists) and (xk, yk) the solution returned by Algorithm 1, where k ≥

√
2��R�−1∕2 − 1 

and � is as defined in (12). Define

where v is an approximate eigenvector that satisfies vTAv ≤ �1 + � and ‖v‖ = 1 , and 
t is chosen such that t(vTAxk + bTv + (−�1 + �)xT

k
v) ≤ 0 and ‖xk + tv‖2 = yk (which 

also always exists). Then, we have

where f1 is the objective function in (CRS). Furthermore, when the approximate 
eigenpair is computed by the Lanczos method, the output is correct with probability 
at least 1 − � and the total number of matrix-vector products is at most

G(xk) − G∗
≤

2�L‖x∗ − x0‖2
(k + 1)2

,

(12)𝛾 = max

�
‖A + (𝜖 − 𝜃)I‖2, 𝜌

4
√
l̂

�
.

f3(xk, yk) − f (x� , y�) ≤ �

x̃ =

�
xk, if ‖xk‖2 = yk,

xk + tv, otherwise,

f1(x̃) − f1(x
∗) ≤ 𝜖 + (−𝜆1 + 𝜂)2𝜖∕𝜌2 = O(𝜖),

√
2��R�−1∕2 − 1 +

log
�
n∕�2

�

2
√
2

�‖A‖2
�

= O
�
�
−1∕2 log(n∕�)

�
.
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Proof Recall that f2 and f3 are the objective functions of (BCP) and (SP), respec-
tively. For any optimal solution x∗ of (CRS), (x∗, ‖x∗‖2) is an optimal solution of 
(BCP). Therefore, an optimal solution (x∗, y∗) satisfying ‖x∗‖2 = y∗ always exists. 
Let Ek = f3(xk, yk) − f3(x

� , y�) . From Lemma 2, we obtain that f3(𝛼k) − f3(x
𝜂 , y𝜂) < 𝜖. 

If 𝛼k(n + 1) > ‖𝛼k(1 ∶ n)‖2 and 
√
𝛼k(n + 1) > (−𝜆1 + 𝜂)∕𝜌 , we then go to Line 8 

and Algorithm 1 outputs (xk, yk) instead of �k . The y-part of the objective function 
f3 , i.e.,

is increasing when 
√
y ≥ (−� + �)∕� , and hence Line 8 outputs a solution whose 

objective value is at most f3(�k) . Hence Ek ≤ � for all k ≥
√
2��R�−1∕2 − 1 . Using 

this, we have

where the inequality follows from the fact f3(x� , y�) − f3(x
∗, y∗) ≤ 0 because (x� , y�) 

is an optimal solution to (SP) and the last equality from the fact that ‖x∗‖2 = y∗.
If ‖xk‖2 = yk , we have that x̃ = xk and hence that f3(xk, yk) = f1(x̃) . Substi-

tuting f3(xk, yk) = f1(x̃) to (13) and noting that f1(x∗) = f2(x
∗, y∗) , we have that 

f1(x̃) − f1(x
∗) ≤ 𝜖. If ‖xk‖2 < yk , we have x̃ = xk + tv with ‖x̃‖2 = yk and hence

where the third equality follows from vTAv = � = �1 + � − � and the inequality from 
t(vTAxk + bTv + (−�1 + �)xT

k
v) ≤ 0 . Note that a constant t satisfying such an ine-

quality always exists. Indeed, since ‖xk‖2 < yk , the equation ‖xk + tv‖2 = yk (in t) 
have two roots of opposite signs. Hence, we can always choose a t such that 
t(vTAxk + bTv + (−�1 + �)xT

k
v) ≤ 0. Using the inequalities (13), (14) and the fact 

that f1(x
∗) = f2(x

∗, y∗) , we get f1(x̃) − f1(x
∗) ≤ 𝜖 + 𝜖t2∕2 . Also, ‖xk + tv‖2 = yk 

implies that t ≤ ‖xk‖ +
√
yk ≤ 2

�
−�1+�

�

�
 . Thus, we have

�

3
y

3

2 −
−� + �

2
y,

(13)

f3(xk, yk) − f2(x
∗, y∗)

= f3(xk, yk) − f3(x
� , y�) + f3(x

� , y�) − f3(x
∗, y∗) + f3(x

∗, y∗) − f2(x
∗, y∗)

≤Ek + 0 +
�

2

�‖x∗‖2 − y∗
�

=Ek,

(14)

f1(x̃) − f3(xk, yk)

=
1

2
(xk + tv)TA(xk + tv) + bT (xk + tv) +

𝜌

3
��(xk + tv)��3

−

�
1

2
xT
k
Axk + bTxk +

𝜌

3
y
3∕2

k
+

−𝜆1 + 𝜂

2

�‖xk‖2 − yk
��

= tvTAxk +
t2

2
vTAv + tbTv −

−𝜆1 + 𝜂

2

�‖xk‖2 − ‖xk + tv‖2�

= t(vTAxk + bTv) +
t2

2
(𝜆1 + 𝜖 − 𝜂) −

−𝜆1 + 𝜂

2

�
−2txT

k
v − t2

�

= t
�
vTAxk + bTv +

�
−𝜆1 + 𝜂

�
xT
k
v
�
+ 𝜖t2∕2

≤ 𝜖t2∕2,
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where the last inequality follows from 0 ≤ � ∶= −� + �1 + � ≤ �.
From Lemma 1, with probability at least 1 − � , such � and v can be computed in 

at most log(n∕�
2)

2
√
2

�‖A‖2
�

 iterations. And Lemma 2 shows that the number of operations 
required by Algorithm 1 is at most 

√
2��R�−1∕2 − 1 . This completes the proof.   ◻

4  Numerical experiments

In this section, we first compare performance of our subproblem solver to the Krylov 
subspace method on randomly generated instances whose matrix A in the quadratic 
term has at least one negative eigenvalue. We then compare ARC [9] algorithms 
with different subproblem solvers on test problems from the CUTEst collection [14].

4.1  Comparison for subproblem solvers

In this subsection, we compare the numerical performance between our methods 
and the Krylov subspace method [9] using randomly generated instances. The prob-
lem instances are generated in the same manner as in [7], except that we replace 
both the original diagonal matrix A and vector b by QTAQ and QTb , respectively to 
make the problem more computationally involved and less trivial. The matrix Q is a 
random block diagonal matrix (with n/K blocks) and each block is generated by the 
MATLAB command orth(rand(K)) with K being a positive integer. Note that 
the random matrices generated in this manner are of full rank almost surely. As 
pointed out in [7], by construction, the optimal values are −1 for all cases. Problems 
with different dimensions n and different sparsity levels were tested. The sparsity of 
matrix A is then K/n, i.e., a proportion K/n of the total entries are nonzero. For fixed 
K and n, problems with different condition numbers � and eigen-gaps gap (to be 
defined later) in the easy and hard cases were also tested, which are believed to 
strongly affect the hardness of problem (CRS) and the Krylov subspace method [7]. 
In the easy case, we tested problems with the condition number � =

�n+�
∗

�1+�
∗
 , where �n 

is the largest eigenvalue of A and �∗ is the optimal Lagrangian multiplier, which is 
an indicator for the hardness of the problem [7]. In the hard case, we tested problems 
with different eigen-gap ��� = �2 − �1 , where �2 is the second smallest eigenvalue 
of matrix A. All experiments were run on a Windows workshop with 16 Intel Xeon 
W-2145 cores (3.70GHz) and 64GB of RAM.

The approximate eigenvalue in formulating the surrogate problem was computed 
by the MATLAB function eigs. We found empirically that setting the tolerance (an 
input argument of the MATLAB function eigs) to be 5∕� in the easy case and 10−6 
in the hard case yields a reasonable trade-off between accuracy and efficiency. Both 
(SP) and (AP) were tested. Besides APG, we have also applied BBM to solve the 

f1(x̃) − f1(x
∗) ≤ 𝜖 + 2𝜖

(
−𝜆1 + 𝜂

𝜌

)2

≤ 𝜖 + 2

(
−𝜆1 + 𝜖

𝜌

)2

𝜖,
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problems (SP) and (AP). For APG, we used a restarting strategy, which is a com-
mon method for speeding up the algorithm [16, 21]. For BBM, we used a simple 
line search rule to guarantee the decrease of the objective function values. As we 
know the optimal value is −1 , we terminate our algorithm and the Krylov subspace 
method2 if the objective value is less than -1+1e–6.

Tables  1, 2 and 3 show the performance comparison of our methods and the 
Krylov subspace method. In the tables, BBM(AP) denotes the method that solves 
problem (AP) by BBM; BBM(SP) denotes the method that solves problem (SP) by 
BBM; APG(AP) denotes the method that solves problem (AP) by APG; APG(SP) 
denotes the method that solves problem (SP) by APG; and Krylov denotes the 
Krylov subspace methods for directly solving problem (CRS). In the tables, fval-
opt denotes the objective value accuracy, which is the objective value returned by 
the algorithm minus the optimal value; iter denotes the iteration number of each 
algorithm; time denotes the total time of each algorithm; timeeig denotes the time 
cost for approximately computing the minimum eigenvalue, which is 0 for the Kry-
lov subspace method.

From Tables  1 and 2 , we see that in the easy case, our methods achieved the 
prescribed accuracy when 𝜅 < 104 and were a bit slower than the Krylov subspace 
method. All our four methods took more iterations and CPU time as the condition 
number � increases, as expected. We also see that in our methods the eigenvalue 
computation took about 1/3 to 1/2 of the total CPU time and the ratio of timeeig 
over time becomes slightly smaller as the condition number increases. From 
Table 3, we see that in the hard case, our methods performed much better than the 
Krylov subspace method in terms of solution quality, iteration number and CPU 
time. All our four methods took more iterations and CPU time as the eigen-gap � 
increases, as expected. We also observe that the eigenvalue computation took more 
than 2/3 of total time and the ratio of timeeig over time becomes larger if the eigen-
gap decreases. For the test problems with gap= 10−4 , the Krylov subspace method 
attained the maximum time 500 seconds and failed to return a solution satisfying 
the stopping criteria, while our methods sufficiently solved all the problems in less 
than 10 seconds on average. As our methods always outperform the Krylov sub-
space method in the hard case, we do not report more results for the hard case. In 
fact, the Krylov subspace method fails to find an approximate solution, while our 
methods always find a good approximate solution with an accuracy 10−6 . We also 
notice that, in both the easy and hard cases, APG are slightly better than BBM, espe-
cially for instances with a large condition number, and each of APG and BBM has 
a similar performance on solving (AP) and (SP). Comparing the ratio timeeig/time, 
we conclude that the two considered first-order methods performs on par in terms of 
solving the surrogate problems (AP) and (SP). For future research, we would like to 
develop more efficient methods for solving the surrogate problem.

2 The authors are indebted to Coralia Cartis for her kind sharing of the MATLAB codes for the Krylov 
subspace method.
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4.2  Numerical tests on CUTEst problems

In this subsection, we compare the numerical performance of ARC algorithms [9] 
implemented with different subproblem solvers on unconstrained test problems of the 
CUTEst collections.

Towards that end, we describe a variant of ARC, Algorithm  2, whose subprob-
lem solver is based on our reformulation. Denoting the function to minimize by F, in 
each iteration, we compute an approximate solution for the cubic regularization model 
function

where Bk is an approximation of the Hessian ∇2F(xk) , gk = ∇F(xk) and �k is an 
adaptive parameter. Suppose S is an arbitrary solver for (CRS) and A is an arbitrary 
solver for the surrogate problem (AP). In our algorithm, we call A if the following 
condition is met:

where �1 and �2 are some small positive real numbers and �1(Bk) is the minimum 
eigenvalue of Bk ; and otherwise we call S to solve the model function directly. Con-
dition  (15) is motivated by the facts that the Cauchy point is a good initial point 
when the norm of the gradient is large and that the subproblem solver A is designed 
for cases where Bk at current iterate has at least one negative eigenvalue. We use the 
Cauchy point [9] as an initial point:

The (approximate) solution sk to the model function returned by the solver S or A is 
accepted as the trial step if the model function value at sk is smaller than that at the 
Cauchy point sC

k
 ; otherwise the Cauchy point sC

k
 is used. From [9, Lemma 2.1], the 

above choice of the trial step guarantees that our variant of ARC (Algorithm 2) con-
verges to a first-order stationary point (i.e., limk→∞ ‖gk‖ = 0 ) under some mild con-
ditions, e.g., F is a continuously differentiable function, ‖gti − gli‖ → 0 whenever 
‖xti − xli‖ → 0 for any subsequences {ti} and {li} of natural numbers and the norm 
of the approximate Hessian Bk is upper bounded by some positive constant for all k.

min
s

mk(s) = sTBks + gT
k
s +

�k

3
‖s‖3,

(15)‖gk‖ ≤ max
�
F(xk), 1

�
⋅ 𝜖1 and 𝜆1(Bk) < −𝜖2,

sC
k
= −�C

k
and �C

k
= argmin

�∈ℝ+
mk(−�gk).
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We implemented two different subproblem solvers A in Algorithm  2. In our 
implementation, if condition (15) is not satisfied, we still solve the original cubic 
model (CRS) by BBM so that the effect of solving problem (CRS) via our refor-
mulation can be shown by comparing the overall time and solution quality. For the 
cases where condition  (15) is satisfied, we implemented both APG and BBM to 
solve the surrogate problem (AP). We call the former ARC-RAPG and the latter 
ARC-RBB. We compare our algorithms against the ARC algorithm in [9], denoted 
by ARC-GLRT, where the subproblems are solved by the Krylov subspace method 
and another ARC algorithm with subproblems solved by BBM, denoted by ARC-
BB, which is a simplified version of the algorithm in [4].

We tested medium-size ( n ∈ [500, 1500] ) problems from the CUTEst collections 
as in [4]. For condition (15), we set �1 = 10−2 and �2 = 10−4 . In our numerical tests, 
we found that condition (15) is never met for some problems, and thus ARC-RAPG 
and ARC-RBB reduce to ARC-BB. Therefore, we only report results on those 
instances where condition (15) is satisfied in at lease one iteration. There are 20 such 
instances. We implemented all the ARC algorithms in MATLAB 2017a. All the 
experiments were run on a Macbook Pro laptop. The parameters in ARC are chosen 
as described in [9]. We set Bk = Hk ∶= ∇2F(xk) and the minimum eigenvalue of Hk 
is approximately computed by the MATLAB command eigs with tolerance 1e–4. 
We terminate each ARC algorithm if either the iteration counter k reaches 5000 or 
the stopping criteria

are met. In our test, all algorithms were terminated before iteration counter reaches 
5000. When using APG to solve (AP) in ARC-RAPG, we again used the restarting 

‖gk‖ ≤ 10−5 and �1(Hk) ≥ −10−3
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strategy as in Section  4.1. For BBM to solve (AP) or (CRS) in ARC-BB, ARC-
RAPG and ARC-RBB, we used the simple line search rule to guarantee the decrease 
of the objective function values as in Section 4.1. In all implementations, we termi-
nate the subproblem solver in each inner iteration when the iteration number of the 
subproblem reaches 150, or the following stopping criterion is met:

We report the numerical results for ARC-RAPG, ARC-RBB, ARC-GLRT and 
ARC-BB in Table 4. The first column shows the name of the problem instance. The 
number below the problem name represents its dimension. The column f ∗ shows the 
final objective function value. The columns ni , nprod , nf  , ng and neig show the itera-
tion number, number of Hessian-vector products, number of function evaluations, 
number of gradient evaluations and the number of eigenvalue computations. The 
columns time, timeeig and timeloop , show in seconds the overall CPU time, eigenvalue 
computation time and difference between the last two, respectively. From Table 4, 
we see that with our stopping criteria, the algorithms return the same final objective 
values on almost all the problem instances (except the problem CHAINWOO). The 
quantities ni , nprod , nf  , ng and neig of the four algorithms are comparable. From the 
table, we see that ARC-GLRT slightly outperforms the other three algorithms. The 
table also shows that for some problems, our methods ARC-RAPG and ARC-RBB 
take much more CPU time than ARC-GLRT and ARC-BB. We found that this is 
mainly because timeeig is too large and dominates the total runtime in these prob-
lems. This can be further divided into two situations: either there are many eigen-
value computations, or the number of eigenvalue computations is small but each 
eigenvalue computation takes a large amount of time (in these cases, the MATLAB 
function eigs is difficult to converge, and we used eig instead to compute full 
eigenvalues). Excluding the time to compute the eigenvalues, the actual times of the 
four algorithms do not differ much, which is evidenced by the column timeloop.

To get more insights from the numerical tests, we also use performance pro-
files [10] to illustrate the experimental results in Figs. 1, 2 and 3. We note that, 
although ARC-GLRT has the best performance, the iteration numbers and the 
gradient evaluation numbers required by our algorithm are less than 2 times of 
those by ARC-GLRT on over 90% of the tests, and the numbers of Hessian-vec-
tor products required by our algorithms are also less than 2 times of those by 
ARC-GLRT on about 80% of the tests. We further note that ARC-RAPG, ARC-
RBB and ARC-BB have the similar performance in terms of iteration numbers 
and gradient evaluations. We also plot the performance profiles on test problems 
where algorithms require a CPU time of more than 1 second in Fig. 4. Compared 
with the previous results, the gap between our algorithms and ARC-GLRT has 
narrowed.

To see more advantages of our reformulation, we also investigate the numerical 
results for all the 10 realizations with different initial points for each problem. In 
Table 5, we report the number that ARC-RAPG or ARC-RBB outperforms ARC-
GLRT and ARC-BB out of the 10 realizations for each problem. We see that our 
methods outperform ARC-GLRT and ARC-BB frequently in terms of iteration 

‖∇mk(sk)‖ ≤ min{1, ‖sk‖}‖g(xk)‖.
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number, the numbers of Hessian-vector products and gradient evaluations. This 
shows that our new reformulation may bring advantages in ARC algorithms.

5  Conclusion

In this paper, we developed a novel approach for solving the problem (CRS). We 
first equivalently reformulate the problem (CRS) to a convex constrained opti-
mization problem, where the feasible region admits an easy projection and the 
objective function is formed by using the minimum eigenvalue of the Hessian 
matrix. To circumvent the expensive cost due to the exact computation of the 
minimum eigenvalue, we then constructed a surrogate problem which is again a 
convex constrained optimization problem with a feasible region that admits an 
easy projection and can be solved by a variety of methods such as APG and BBM. 
Furthermore, we proved that an �-approximate solution to (CRS) can be obtained 
in at most Õ(𝜖−1∕2) matrix-vector multiplications if we use the Lanczos method 
for approximate eigenvalue computation and APG to approximately solve the sur-
rogate problem. Numerical results showed that our methods are comparable to 
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Performance profiles (iteration number)
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Fig. 1  Performance profiles for iteration number for ARC-GLRT, ARC-BB, ARC-RAPG and ARC-RBB 
on the CUTEst problems
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the Krylov subspace method in the easy case and significantly outperform the 
Krylov subspace method in the hard case. We also implemented variants of ARC 
where the subproblem solver uses our approaches. The resulting ARC algorithms 
showed good numerical performance on the problem instances from the CUTEst 
datasets. As future work, we plan to investigate the complexity of cubic regu-
larization or ARC variants with subproblem solver based on our reformulations 
for finding an approximate stationary point and local minimizer of smooth non-
convex minimization problems.

Analysis for problem (AP)

The purpose of this appendix is to show that when the approximate mini-
mum eigenvalue � of A is close enough to the exact minimum eigenvalue 
�1 ( 𝜆1 ≤ 𝜃 < −�̄� for some �̄� defined in the following paragraphs), prob-
lem (AP) can be used to construct an approximate solution to (CRS). Define 
B̂ ∶= {(x, y) ∶ ‖x‖2 ≤ y, y ≥ l̂ } . We claim that the problem (AP) simplifies to 
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Performance profiles (gradient evaluation number)
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Fig. 2  Performance profiles for gradient evaluations for ARC-GLRT, ARC-BB, ARC-RAPG and ARC-
RBB on the CUTEst problems
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 i.e., the constraint y ≥ l is redundant. This is because when y ≤ l in (AP0 ), 
�

3
y

3

2 +
�

2
y 

is decreasing in y, and thus the optimal solution of (AP0 ) must satisfy y ≥ l . We con-
sider the following two cases.

The hard case: Recall the optimality condition (2) for (CRS). Note that 
‖(A + �I)†b‖2 − �

2∕�2 ≤ 0 and ‖(A + �I)†b‖2 − �
2∕�2 is a decreasing function in 

� , where (⋅)† denotes the Moore–Penrose pseudoinverse, when � ≥ −�1 because we 
are in the hard case [9]. First consider the case that ‖(A − 𝜆1I)

†b‖2 − 𝜆
2
1
∕𝜌2 < 0 . 

Let �̄� be the largest � ∈ [0,−�1) such that ‖(A + �I)†b‖2 − �
2∕�2 = 0 , if it exists. 

If such �̄� does not exist, we set �̄� = 0 . Using the fact ‖(A + 𝜆I)†b‖2 − 𝜆
2∕𝜌2 < 0 

for � ≥ −�1 , we have

(16)‖(A + 𝜆I)†b‖2 − 𝜆
2

𝜌2
< 0, ∀𝜆 > �̄�.
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Fig. 3  Performance profiles for Hessian-vector products for ARC-GLRT, ARC-BB, ARC-RAPG and 
ARC-RBB on the CUTEst problems
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Suppose that 𝜆1 ≤ 𝜃 < −�̄� and that (x� , y�) is an optimal solution of (AP0 ). 
Let � be the Lagrange multiplier corresponding to the constraint ‖‖x�‖‖2 ≤ y� . 
Then, the KKT condition of (AP0 ) implies Ax� − �x� + b + 2�x� = 0 and 
�

√
y�∕2 + �∕2 − � = 0 . Due to −𝜃 + 2𝜇 > �̄� , we have ‖x𝜃‖2 < y𝜃 ,∀𝜇 ≥ 0 

from (16). Using the complementary slackness �(‖x�‖2 − y�) = 0 , we have 
that � = 0 . Thus, every possible stationary point of (AP0 ) can be writ-
ten as (x� , y�) = ((A − �I)†b + tv , (−�∕�)2) , where t is a scalar satisfying 
‖x� + tv‖ ≤

√
y�  . This in turn yields an approximate optimal solution x� + tv 

to (CRS), where one should note that different t yields the same objective 
value. Next, we consider the remaining case that ‖(A + �1I)

†b‖2 − �
2
1
∕�2 = 0 . 

This case is similar to the easy case, where we can recover an opti-
mal solution if 𝜃 ∈ [𝜆1,−�̄�) , where �̄� is the largest � ∈ [0,−�1) such that 
‖(A + �I)†b‖2 − �

2∕�2 = 0 . (If such �̄� does not exist, we take �̄� = 0 .) The analysis 
is similar to the easy case below and hence omitted here.

The easy case: Recall that in the easy case we have a unique optimal solution x∗ 
satisfying 𝜌‖x∗‖ > −𝜆1 and x∗ = (A + �‖x∗‖I)−1b ; see, e.g., Theorem 3.1 in [9]. 
Let �̄� be the largest � ∈ [0,−�1) such that h(�) ∶= ‖(A + �I)†b‖2 − �

2∕�2 = 0 , 
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Fig. 4  Performance profiles of Hessian-vector products for ARC-GLRT, ARC-BB, ARC-RAPG and 
ARC-RBB on the CUTEst problems where algorithms require a CPU time more than 1 second
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Table 5  The number of times ARC-RAPG (or ARC-RBB) performs better than the other two algorithms 
in 10 realizations with different initial points on each CUTEst problem, considering the number of itera-
tions, the number of Hessian-vector products and the number of gradient evaluations

Problem Index ARC-RAPG ARC-RBB

ARC-GLRT ARC-BB ARC-GLRT ARC-BB

BROYDN7D n
i

6 4 6 0
nprod 4 3 4 2
n
g

5 0 4 2
BRYBND n

i
6 0 6 0

nprod 4 4 4 3
n
g

6 0 6 0
CHAINWOO n

i
0 1 0 4

nprod 0 0 0 6
n
g

0 2 0 3
DIXMAANF n

i
8 1 9 2

nprod 5 3 7 6
n
g

9 2 9 3
DIXMAANG n

i
3 1 3 1

nprod 3 2 3 5
n
g

3 1 3 1
DIXMAANH n

i
5 1 5 3

nprod 3 1 4 6
n
g

4 2 5 2
DIXMAANJ n

i
2 2 2 4

nprod 8 3 8 5
n
g

4 2 2 0
DIXMAANK n

i
1 1 0 3

nprod 3 3 6 6
n
g

2 2 0 0
DIXMAANL n

i
1 2 1 4

nprod 4 3 6 4
n
g

2 3 0 2
EXTROSNB n

i
10 4 10 2

nprod 0 4 0 2
n
g

9 7 10 7
FLETCHCR n

i
6 5 4 1

nprod 2 3 1 2
n
g

3 4 2 1
FREUROTH n

i
7 7 6 4

nprod 0 6 0 6
n
g

6 6 4 5
GENHUMPS n

i
10 1 10 2

nprod 10 0 10 0
n
g

10 1 10 2
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if it exists. If such �̄� does not exist, we take �̄� = 0 . Then for all 𝜆 ∈ (�̄�,−𝜆1) , 
h(𝜆) > 0 as lim

�→−�1
h(�) = +∞ . This, together with the definition of �̄� and 

the fact that h(�) is a decreasing function on (−�1,+∞) , implies that there is 
only one point, denoting �̃� in (�̄�,+∞) satisfying ‖(A + �I)†b‖2 − �

2∕�2 = 0 . 
Let x̃ = (A + �̃�I)†b . The optimality condition (2) implies that x̃ is the unique 
optimal solution of (CRS). We again suppose that 𝜆1 ≤ 𝜃 < −�̄� . If � = �1 , 
(AP0 ) reduces to the exact reformulation (CP). Next, we consider the case 
that 𝜆1 < 𝜃 < −�̄� . Assuming that � = 0 , the inequality 𝜆1 < 𝜃 < −�̄� implies 
that ‖x𝜃‖ = ‖(A − 𝜃I)†b‖ >

√
y𝜃 = −𝜃∕𝜌 , which violates the constraint 

‖x‖2 ≤ y . Hence, we must have 𝜇 > 0 , and thus we always have ‖x�‖ =
√
y�  , 

i.e., ‖(A + (−� + �)I)†b‖ = (−� + �)∕� . This implies −� + � = �
∗ . That is, we 

recover the optimal solution if 𝜃 < −�̄�.

Table 5  (continued)

Problem Index ARC-RAPG ARC-RBB

ARC-GLRT ARC-BB ARC-GLRT ARC-BB

GENROSE n
i

3 6 2 5

nprod 0 2 2 5

n
g

2 7 1 6
NONCVXU2 n

i
0 7 0 2

nprod 6 8 7 5
n
g

0 7 0 4
NONCVXUN n

i
0 3 0 2

nprod 2 3 2 2
n
g

0 3 0 2
OSCIPATH n

i
0 1 0 3

nprod 2 1 4 3
n
g

0 2 0 5
TOINTGSS n

i
4 2 3 0

nprod 0 2 0 0
n
g

4 3 3 0
TQUARTIC n

i
2 5 2 2

nprod 0 1 0 2
n
g

3 5 0 2
WOODS n

i
0 5 0 5

nprod 0 2 0 5
n
g

0 4 0 3
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