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a b s t r a c t 

In production planning and resource allocation problems, we often encounter a situation where a con- 

straint can be relaxed or removed if new resources are added. Such constraints are termed on–off con- 

straints. We study the quadratic programming problem with such on–off constraints, which is in general 

NP-hard. As the problem size grows, branch-and-bound algorithms for the standard formulation of this 

problem often require a lot of computing time because the lower bound from the continuous relaxation 

is in general quite loose. We generalize the quadratic convex reformulation (QCR) approach in the litera- 

ture to derive a new reformulation that can be solved by standard mixed-integer quadratic programming 

(MIQP) solvers with less computing time when the problem size becomes large. While the conventional 

QCR approach utilizes a quadratic function that vanishes on the entire feasible region, the approach pro- 

posed in our paper utilizes a quadratic function that only vanishes on the set of optimal solutions. We 

prove that the continuous relaxation of our new reformulation is at least as tight as that of the best 

reformulation in the literature. Our computational tests verify the effectiveness of our new approach. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

In this paper we study the following mixed-integer quadratic

programming (MIQP) problem: 

(P) min 

x,y 
f � x T Qx + c T x + h 

T y 

s . t . a i − b i y i ≤ A i x, i = 1 , . . . , m, (1)

Bx + Dy ≤ d, (2)

y ∈ { 0 , 1 } m , x ∈ R 

n , (3)

where Q ∈ R 

n ×n is symmetric and positive definite, c ∈ R 

n , h ∈
R 

m , A = [ A 

T 
1 , . . . , A 

T 
m 

] T ∈ R 

m ×n , a = (a 1 , . . . , a m 

) T ∈ R 

m , b =
(b 1 , . . . , b m 

) T ∈ R 

m + , B ∈ R 

M×n , D ∈ R 

M×m , and d ∈ R 

M . The con-

straint (1) is introduced to represent the situation where we can

relax the constraint by adding a resource b i while incurring a fixed

cost of h i . It can also be interpreted as an linear “on/off” con-

straint where the constraint is activated (on) when the boolean

variable y is zero and is not activated (off) when y is one. This
i i 

∗ Corresponding author. 

E-mail addresses: baiyiwu@outlook.com (B. Wu), dli226@cityu.edu.hk , 

dli@se.cuhk.edu.hk (D. Li), rjjiang@fudan.edu.cn (R. Jiang). 

r

https://doi.org/10.1016/j.ejor.2018.09.028 

0377-2217/© 2018 Elsevier B.V. All rights reserved. 
onstraint has many applications such as in production planning

 Bestuzheva, Hijazi, & Coffrin, 2016 ), facility location ( Cornnejols,

isher, & Nemhauser, 1977 ) and supervised classification ( Belotti

t al., 2016 ). Problem (P) is NP-hard since its special case with

 = 0 is already NP-hard ( Benati & Rizzi, 2007 ). Our formulation

lso includes the probabilistically-constrained quadratic program-

ing problem with finite distributions as a special case ( Zheng,

un, Li, & Cui, 2012 ). 

Problem (P) can be solved by existing MIQP solvers, such as

PLEX and Gurobi , within a branch-and-bound framework us-

ng continuous relaxations. However, when (P) is directly solved

y standard MIQP solvers, the performance is not satisfactory, as

he continuous relaxation of formulation (P) usually yields a loose

ower bound 

1 . Efficient MIQP reformulations to problem (P) were

erived in Zheng et al. (2012) and Hsia et al. (2014) via a family of

uxiliary semi-definite programming (SDP) problems. 

The purpose of this paper is to reformulate problem (P) to

n equivalent MIQP reformulation that is easier to solve as the

roblem size grows. An MIQP reformulation can then be plugged

nto and solved by any off-the-shelf softwares such as CPLEX and
1 Hsia, Wu, and Li (2014) provided an example. They also proved that their new 

eformulation has a tighter continuous relaxation lower bound than that from the 

standard formulation. 
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f  

t

w  
urobi . In general, the effectiveness of a reformulation depends

ainly on two factors. The first factor is the quality of the lower

ound provided by the continuous relaxation of the reformulation.

ighter lower bounds usually lead to a smaller-sized branch-and-

ound tree and less searching time. The second factor is the time

eeded to solve the continuous relaxations of the reformulation.

ven if the continuous relaxation has a tight lower bound, if the

mount of time needed to compute the lower bound is large, the

eformulation is not effective. For example, if the relaxation prob-

em is not convex, it could be very difficult to obtain the lower

ound. 

We first follow the work of Zheng et al. (2012) and Hsia et al.

2014) and show that their reformulations can be simplified with

 reduced number of decision variables. We prove that these re-

uced reformulations will be at least as tight as their original

eformulations 2 . 

Next, we generalize the quadratic convex reformulation (QCR)

pproach in the literature (See, e.g., Billionnet, Elloumi, & Plateau,

008; Billionnet, Elloumi, & Plateau, 2009; Plateau, 2006 ) to derive

 new reformulation that is at least as tight as the reduced re-

ormulation of Zheng et al. (2012) . Also, our reformulation strictly

ominates the reduced reformulation of Hsia et al. (2014) . The QCR

pproach in the literature appends to the original objective func-

ion a quadratic function that vanishes on the feasible region and

s confined to situations with equality constraints. While the QCR

pproach requires the added quadratic function to vanish on the

ntire feasible region, the approach proposed in our paper only re-

uires the added quadratic function to vanish on the set of optimal

olutions. With this significant advantage, we can extend the QCR

pproach to more general situations with inequality constraints. 

We also conduct numerical comparison between the reduced

eformulation of Zheng et al. (2012) and our new reformulation.

reliminary experiments show that our new reformulation is more

ffective when solved in standard MIQP solvers such as CPLEX . 
Note that on/off constraints are also defined using the following

orm in the literature, 

 ∈ �0 ∪ �1 , 

0 = { (x, y ) ∈ R 

n × { 0 , 1 } | y = 0 , l 0 ≤ x ≤ u 

0 } , 
1 = { (x, y ) ∈ R 

n × { 0 , 1 } | y = 1 , g(x ) ≤ 0 , l 1 ≤ x ≤ u 

1 } . 
 compact characterization of the convex hull was proposed in

ünlük and Linderoth (2010) when the set �0 is a singleton. The

esult was then generalized by Hijazi, Bonami, Cornuéjols, and

uorou (2012) to cases where �0 is a hyper-rectangle and the

onstraint function g ( x ) is isotone. Convex quadratic relaxations

ere derived in Hijazi, Coffrin, and Van Hentenryck (2013) for

ower system problems with nonlinear on/off constraints. A de-

ailed literature review can be found in Bonami, Lodi, Tramontani,

nd Wiese (2015) for mathematical programming with such on/off

onstraints. 

The remaining of the paper is organized as follows. In

ection 2 we review the related reformulations in the literature.

n Section 3 we reduce the existing reformulations discussed in

ection 2 to reformulations with fewer decision variables. We

rove that the reduced reformulations are at least as tight as the

riginal reformulations in Zheng et al. (2012) and Hsia et al. (2014) .

n Section 4 we review the QCR approach in the literature and

how how to generalize the state-of-the-art of QCR to obtain new

eformulations. We show that the construction of the best refor-

ulation reduces to an SDP problem. In Section 5 we establish

he tightness of our new reformulation. In Section 6 we conduct

umerical tests to demonstrate that the performance of our new
2 We say a reformulation is tight if the continuous relaxation of this reformula- 

ion provides a tight lower bound. 

p

m

w

eformulation is better than the existing results when solved in

tandard MIQP solvers. Finally we conclude the paper in Section 7 .

Notation: Throughout this paper, we denote by v( •) the optimal

alue of problem ( •), and R 

n + the nonnegative orthant of R 

n . For

ny a ∈ R 

n , we denote by Diag (a ) = Diag (a 1 , . . . , a n ) the diagonal

atrix with a i being its i th diagonal element. We denote by e the

ll-one vector. Denote the continuous relaxation problem of ( •) by

( •) , which relaxes the binary constraint y ∈ {0, 1} m to the following

inear constraints: 

 ≤ y i ≤ 1 , i = 1 , . . . , m. (4) 

enote by (P( θ )) a problem formulation that is parameterized by θ .

enote by (P(u, v , w )) a problem formulation that is parameterized

y u, v , and w . Denote by q ( · , · , · ) a function on three variables.

e list here the main problem formulations studied in this paper

o facilitate a clear reference for readers: 

• Section 2 : 
• (P1( θ )): Reformulation of (P) derived in Zheng et al. (2012) . 
• ( P1 (θ )) : The continuous relaxation of (P1( θ )). 
• (P2( θ )): Reformulation of (P) derived in Hsia et al. (2014) . 
• ( P2 (θ )) : The continuous relaxation of (P2( θ )). 

• Section 3 : 
• (P1R( θ )): Reduced reformulation of (P1( θ )). 
• ( P1R (θ )) : The continuous relaxation of (P1R( θ )). 
• (P2R( θ )): Reduced reformulation of (P2( θ )). 
• ( P2R (θ )) : The continuous relaxation of (P2R( θ )). 

• Section 4 : 
• (P( q )): Our new reformulation for (P) parameterized by a

quadratic function q . 
• ( P q (u, v , w ) ): Our new reformulation for (P) parameterized

by u, v and w . 
• ( P q (u, v , w ) ): The continuous relaxation of ( P q (u, v , w ) ). 

• Section 5 : 
• ( P ′ q (u, v , w ))) : An alternative form of our new reformula-

tion ( P q (u, v , w ) ). 
• ( P ′ q (u, v , w ) ): The continuous relaxation of ( P ′ q (u, v , w ) ). 

. Related reformulations 

In this section, we review a few related reformulations and re-

ormulation technique in the literature. Zheng et al. (2012) derived

he following parameterized reformulation of (P): 

(P1 (θ )) min 

x,y,z,w,φ
f 1 � x T (Q − A 

T Diag (θ ) A ) x + c T x + h 

T y 

+ 

m ∑ 

i =1 

θi (w 

2 
i + φi − a 2 i y i ) 

s . t . A i x = w i + z i − y i a i , i = 1 , . . . , m, (5) 

(a i − b i ) y i ≤ z i ≤ a i y i , i = 1 , . . . , m, (6) 

a i ≤ w i , i = 1 , . . . , m, (7) 

z 2 i ≤ φi y i , φi ≥ 0 , i = 1 , . . . , m, (8) 

w = (w 1 , . . . , w m 

) T ∈ R 

m , (9) 

z = (z 1 , . . . , z m 

) T ∈ R 

m , (10) 

φ = (φ1 , . . . , φm 

) T ∈ R 

m , (11) 

(2) , (3) , 

here θ ∈ R 

m is a parameter vector. They searched for the best

arameter θ by solving the following problem: 

ax 
θ∈ R m 

{ v ( P1 (θ )) | f 1 is a convex function. } , (12) 

hich can be solved via an equivalent SDP formulation. 
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Hsia et al. (2014) derived the following parameterized reformu-

lation of (P): 

(P2 (θ )) min 

x,y,z,w 

f 2 � x T (Q − A 

T Diag (θ ) A ) x + c T x + h 

T y 

+ 

m ∑ 

i =1 

θi (w 

2 
i + z 2 i − a 2 i y i ) 

s . t . (2) , (3) , (9) , (10) , (5) , (6) , (7) , 

where θ ∈ R 

m is a parameter vector. They searched for the best

parameter θ by solving the following problem: 

max 
θ∈ R m 

{ v ( P2 (θ )) | f 2 is a convex function. } , (13)

which can also be solved via an equivalent SDP formulation. 

Next, we review the QCR approach in the literature for solv-

ing integer or mixed-integer quadratic programming problems. The

conventional QCR approach possesses the following characteristics:

(a) An additional function that is zero in the entire feasible re-

gion is added to the original objective function to form a

new objective function. 

(b) The newly formed objective function is convex, so that the

continuous relaxation of the new reformulation is convex

and thus can be solved efficiently. 

(c) The new reformulation is configured in a way that its con-

tinuous relaxation is tighter than that of the original for-

mulation, so that the new reformulation can be solved by

branch-and-bound methods more efficiently. 

Hammer and Rubin (1970) pioneered the QCR approach for

solving the following binary quadratic programs: 

min 

x 

{
x T Qx + c T x | Ax = d, x i ∈ { 0 , 1 } , i = 1 , . . . , n 

}
, (14)

where Q is indefinite. In their proposed QCR, Hammer and Rubin

(1970) added to the objective function a term 

∑ 

i u (x 2 
i 

− x i ) , where

u is a scalar and is chosen to be the negative value of the small-

est eigenvalue of Q . Billionnet and Elloumi (2007) improved this

method by adding the term 

∑ 

i u i (x 2 
i 

− x i ) with u i being the op-

timal dual variables of a certain semi-definite program (SDP).

Plateau (2006) and Billionnet et al. (20 08, 20 09) also utilized the

equality Ax = d in QCR and added the term 

∑ 

i u i (x 2 
i 

− x i ) + θ (Ax −
d) T (Ax − d) to the objective, where u and θ are chosen to be the

dual variables of an enlarged SDP program (Here θ is a scalar 3 ).

Ahlatçıo ̆glu et al. (2012) proposed to combine QCR and the convex

hull relaxation to solve problem (14) . Using binary expansion, the

QCR approach was extended to general mixed-integer quadratic

programs in Billionnet, Elloumi, and Lambert (2012) , Billionnet,

Elloumi, and Lambert (2013) , and Billionnet, Elloumi, and Lambert

(2015) . 

3. Dimension reduction 

In this section, we show that the reformulations reported in the

previous section can be reduced to reformulations with fewer vari-

ables. Also, we prove that the reduced reformulations are at least

as tight as their original reformulations. 

The w vector in problem (P1( θ )) can be eliminated using the

equality constraint (5) , resulting in the following reformulation
3 In Billionnet et al. (2008) and Billionnet et al. (2009) , a more complex form 

of 
∑ M 

r=1 ( 
∑ n 

i =1 θri x i )( 
∑ n 

j=1 A r j x j − b r ) was also considered. It has been shown in Faye 

and Roupin (2007) that the effect of adding this more complex form to the objective 

function is the same as adding θ (Ax − d) T (Ax − d) . 

{
t

η
 

ith a reduced number of decision variables, 

(P1R (θ )) min 

x,y,z,φ
f 1 r � f + 

m ∑ 

i =1 

θi (a 2 i y 
2 
i + z 2 i + 2 a i A i xy i − 2 A i xz i 

− 2 a i y i z i + φi − a 2 i y i ) 

s . t . a i ≤ A i x − z i + a i y i , i = 1 , . . . , m, (15)

(2) , (3) , (10) , (11) , (6) , (8) . 

xample 1. Consider the following example problem: 

in 

x,y 
x T 

[
7 3 

3 6 

]
x + 

[
−7 

−5 

]T 

x + 40 y 

s . t . 5 − 30 y ≤ −8 x 1 + x 2 , 

− 5 x 1 + 2 x 2 − 6 y ≤ 3 , 

y ∈ { 0 , 1 } , x = (x 1 , x 2 ) 
T ∈ R 

2 . 

or given θ , the corresponding reformulation (P1R( θ )) is: 

min 

,y,z,φ
x T 

[
7 3 

3 6 

]
x + 

[
−7 

−5 

]T 

x + 40 y 

+ θ (5 

2 y 2 + z 2 + 2 · 5(−8 x 1 + x 2 ) y − 2(−8 x 1 + x 2 ) z 

− 2 · 5 yz + φ − 5 

2 y ) 

s . t . 5 ≤ −8 x 1 + x 2 − z + 5 y, 

− 5 x 1 + 2 x 2 − 6 y ≤ 3 , 

(5 − 30) y ≤ z ≤ 5 y, 

z 2 ≤ φy, φ ≥ 0 , 

y ∈ { 0 , 1 } , x = (x 1 , x 2 ) 
T ∈ R 

2 , z, φ ∈ R . 

The best parameters θ for (P1R( θ )) can be found by solving the

ollowing problem: 

ax 
θ∈ R m 

{ v ( P1R (θ )) | f 1 r is a convex function. } (16)

ote that f 1 r is convex if and only if the following condition on its

essian holds: 

 1 r � 

 

Q A 

T Diag (a ) Diag (θ ) −A 

T Diag (θ ) 
Diag (θ ) Diag (a ) A Diag (a ) Diag (θ ) Diag (a ) −Diag (a ) Diag (θ ) 
−Diag (θ ) A −Diag (a ) Diag (θ ) Diag (θ ) 

) 

0 . (17)

he tightness of the reduced reformulation (P1R( θ )) is guaranteed

y the following proposition. 

roposition 1. v (16) ≥ v (12) . 

roof. Assume that θ is feasible for problem (12) , then θ ≥ 0 and

he Hessian matrix of the function f 1 is positive semidefinite. This

eans that the quadratic part x T (Q − A 

T Diag (θ ) A ) x is convex in

 . If w 

2 
i 

is replaced by (A i x − z i + y i a i ) 
2 , then the function f 1 be-

omes f 1 r . Because the quadratic parts x T (Q − A 

T Diag (θ ) A ) x and

i (A i x − z i + y i a i ) 
2 are all convex functions, their summation is also

onvex and the Hessian matrix of f 1 r remains positive semidefinite.

hus θ is also feasible for problem (16) . For the same θ , we have

 ( P1 (θ )) = v ( P1R (θ )) , thus v (16) ≥ v (12) . �

roposition 2. If the Slater condition holds for the set 

 (x, y, z, φ) ∈ R 

n × R 

m × R 

m × R 

m | (2) , (4) , (6) , (8) , (15) } , 
hen problem (16) is equivalent to the following SDP problem: 

max 
,β,μ,σ,π,u,λ,w,τ,θ

τ (18)
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Q(

T  

b

P

P

P  

l

η

s

 . t . 

(
Q 1 r 0 . 5 G 

0 . 5 G 

T −ηT d + βT a − e T π − τ

)
� 0 , 

η ∈ R 

M 

+ , β ∈ R 

m 

+ , μ ∈ R 

m 

+ , σ ∈ R 

m 

+ , π ∈ R 

m 

+ , (19) 

(
u i w i 

w i λi 

)
� 0 , u i , w i , λi ∈ R , i = 1 , . . . , m, (20) 

u = θ, θ ∈ R 

m , τ ∈ R , (21) 

here 

 = 

⎛ 

⎜ ⎝ 

c + B 

T η − A 

T β
h − Diag (a ) Diag (a ) θ + D 

T η − Diag (a ) β
+ Diag (a − b) μ − Diag (a ) σ + π − λ

β − μ + σ − 2 w 

⎞ 

⎟ ⎠ 

. 

roof. We first express ( P1R (θ )) by its dual form. Note the follow-

ng equivalence in the constraints: 

z 2 i ≤ φi y i , φi ≥ 0 , y i ≥ 0 , i = 1 , . . . , m 

}
⇐⇒ 

(
φi z i 
z i y i 

)
� 0 . 

ssociate the following multipliers to the constraints in ( P1R (θ )) : 

• η ∈ R 

M + for Bx + Dy ≤ d; 
• βi ∈ R + for a i ≤ A i x − z i + a i y i , i = 1 , . . . , m ; 
• μi and σi ∈ R + for (a i − b i ) y i ≤ z i and z i ≤ a i y i , respectively, i =

1 , . . . , m ; 
• πi ∈ R + for y i ≤ 1, i = 1 , . . . , m ; 

•

(
u i w i 

w i λi 

)
� 0 , u i , w i , λi ∈ R for 

(
φi z i 
z i y i 

)
� 0 , respectively,

i = 1 , . . . , m. 

Let μ = (μ1 , . . . , μm 

) T , σ = (σ1 , . . . , σm 

) T , β = (β1 , . . . , βm 

) T ,

= (λ1 , . . . , λm 

) T , u = (u 1 , . . . , u m 

) T , w = (w 1 , . . . , w m 

) T and π =
(π1 , . . . , πm 

) T . The Lagrangian function of ( P1R (θ )) is then given

y 

 (·) = L (x, y, z, φ;η, β, μ, σ, π, u, w, λ; θ ) 

= f 1 r + ηT (Bx + Dy − d) + 

m ∑ 

i =1 

βi (a i − a i y i − A i x + z i ) 

+ 

m ∑ 

i =1 

μi ((a i − b i ) y i − z i ) + 

m ∑ 

i =1 

σi (z i − a i y i ) + 

m ∑ 

i =1 

πi (y i − 1) 

−
m ∑ 

i =1 

(u i φi + 2 w i z i + λi y i ) 

= (x T , y T , z T ) Q 1 r (x T , y T , z T ) T 

+ (c + B 

T η − A 

T β) T x 

+ (h − Diag (a ) Diag (a ) θ + D 

T η − Diag (a ) β + Diag (a − b) μ

− Diag (a ) σ + π − λ) T y 

+ (β − μ + σ − 2 w ) T z 

+ (θ − u ) T φ

− ηT d + βT a − e T π. 

nder the assumed Slater condition, problem (16) is equivalent to

he following problem by Lagrangian duality: 

max 
∈ R m , (17) , (19) , (20) 

{
min 

(x,y,z,φ) ∈ R n ×R m ×R m ×R m 
L (·) 

}
. (22) 

f (17) does not hold, then the inner minimization of prob-

em (22) is an unconstrained non-convex quadratic minimization
roblem and its optimal value is −∞ . Thus, problem (22) can be

implified to: 

max 
∈ R m , (19) , (20) 

{
min 

(x,y,z,φ) ∈ R n ×R m ×R m ×R m 
L (·) 

}
. (23) 

ollowing Corollary 4.2 in Lemaréchal and Oustry (1999) , problem

23) is equivalent to the SDP problems (18) –(21) . �

The above variable reduction technique can also be applied to

he reformulation (P2( θ )). The w vector in problem (P2( θ )) can also

e eliminated using the equality constraint (5) , resulting in the fol-

owing reformulation with a reduced number of variables, 

(P2R (θ )) min 

x,y,z 
f 2 r � f + 

N ∑ 

i =1 

θi (a 2 i y 
2 
i + 2 z 2 i + 2 a i A i xy i − 2 A i xz i 

− 2 a i y i z i − a 2 i y i ) 

s . t . (2) , (3) , (10) , (6) , (15) . 

xample 2. Consider the same original problem in Example 1 . For

iven θ , the corresponding reformulation (P2R( θ )) is: 

in 

x,y,z 
x T 

[
7 3 

3 6 

]
x + 

[
−7 

−5 

]T 

x + 40 y 

+ θ (5 

2 y 2 + 2 z 2 + 2 · 5(−8 x 1 + x 2 ) y − 2(−8 x 1 + x 2 ) z 

− 2 · 5 yz − 5 

2 y ) 

s . t . 5 ≤ −8 x 1 + x 2 − z + 5 y, 

− 5 x 1 + 2 x 2 − 6 y ≤ 3 , 

(5 − −30) y ≤ z ≤ 5 y, 

y ∈ { 0 , 1 } , x = (x 1 , x 2 ) 
T ∈ R 

2 , z ∈ R . 

The best parameters θ for (P2R( θ )) can be found by solving the

ollowing problem: 

ax 
θ∈ R m 

{ v ( P2R (θ )) | f 2 r is a convex function. } (24) 

ote that f 1 r is convex if and only if the following condition on its

essian holds: 

 2 r � 

 

Q A 

T Diag (a ) Diag (θ ) −A 

T Diag (θ ) 
Diag (θ ) Diag (a ) A Diag (a ) Diag (θ ) Diag (a ) −Diag (a ) Diag (θ ) 
−Diag (θ ) A −Diag (a ) Diag (θ ) 2 Diag (θ ) 

) 

� 0 . (25) 

he tightness of the reduced reformulation (P2R( θ )) is guaranteed

y the following proposition. 

roposition 3. v (24) ≥ v (13) . 

roof. The proof is similar to that of Proposition 1 . �

roposition 4. Problem (24) is equivalent to the following SDP prob-

em: 

max 
,β,μ,σ,λ,π,θ,τ

τ (26) 

 . t . 

(
Q 2 r 0 . 5 G 

0 . 5 G 

T −ηT d + βT a − e T π − τ

)
� 0 , 

η ∈ R 

M 

+ , β ∈ R 

m 

+ , μ ∈ R 

m 

+ , σ ∈ R 

m 

+ , λ ∈ R 

m 

+ , π ∈ R 

m 

+ , 
(27) 

θ ∈ R 

m , τ ∈ R , (28) 
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A

B  

c  
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h
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f
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0  

F  
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T

 

b  

1  

b  
where 

G = 

⎛ 

⎜ ⎝ 

c + B 

T η − A 

T β
h − Diag (a ) Diag (a ) θ + D 

T η − Diag (a ) β + Diag (a − b) μ
−Diag (a ) σ + π − λ

β − μ + σ

⎞ 

⎟ ⎠ 

. 

Proof. Associate the following multipliers to the constraints in

( P2R (θ )) : 

• η ∈ R 

M + for Bx + Dy ≤ d; 
• βi ∈ R + for a i ≤ A i x − z i + a i y i , i = 1 , . . . , m ; 
• μi and σi ∈ R + for (a i − b i ) y i ≤ z i and z i ≤ a i y i , respectively, i =

1 , . . . , m ; 
• λi and πi ∈ R + for 0 ≤ y i and y i ≤ 1, i = 1 , . . . , m ; 

Let μ = (μ1 , . . . , μm 

) T , σ = (σ1 , . . . , σm 

) T , β = (β1 , . . . , βm 

) T ,

λ = (λ1 , . . . , λm 

) T and π = (π1 , . . . , πm 

) T . The Lagrangian function

of ( P2R (θ )) is then given by 

L (·) = L (x, y, z;η, β, μ, σ, π, λ; θ ) 

= f 2 r + ηT (Bx + Dy − d) + 

m ∑ 

i =1 

βi (a i − a i y i − A i x + z i ) 

+ 

m ∑ 

i =1 

μi ((a i − b i ) y i − z i ) + 

m ∑ 

i =1 

σi (z i − a i y i ) 

+ 

m ∑ 

i =1 

πi (y i − 1) −
m ∑ 

i =1 

λi y i 

= (x T , y T , z T ) Q 1 r (x T , y T , z T ) T 

+ (c + B 

T η − A 

T β) T x 

+ (h − Diag (a ) Diag (a ) θ + D 

T η − Diag (a ) β + Diag (a − b) μ

− Diag (a ) σ + π − λ) T y + (β − μ + σ ) T z 

− ηT d + βT a − e T π. 

Because the Slater condition is automatically satisfied due to the

linearity in constraints, problem (24) is equivalent to the following

problem by Lagrangian duality: 

max 
θ∈ R m , (25) , (27) 

{
min 

(x,y,z) ∈ R n ×R m ×R m 
L (·) 

}
. (29)

If (25) does not hold, then the inner minimization of problem

(29) is an unconstrained non-convex quadratic minimization prob-

lem and its optimal value is −∞ . Thus, problem (29) can be sim-

plified to: 

max 
θ∈ R m , (27) 

{
min 

(x,y,z) ∈ R n ×R m ×R m 
L (·) 

}
. (30)

Following Corollary 4.2 in Lemaréchal and Oustry (1999) , problem

(30) is equivalent to the SDP problems (26) –(28) . �

4. New quadratic convex reformulation 

In this section, we extend the QCR approach in the literature to

derive a better equivalent reformulation for problem (P). The ap-

plicability of the QCR approach in the literature is limited to prob-

lems with equality constraints (The binary constraint y i ∈ {0, 1} is

equivalent to y 2 
i 

− y i = 0 ). This means that we cannot apply the

QCR approach directly to problem (P), since merely adding y 2 
i 

− y i 
to the objective function would not help improve the lower bound

if the convexity of the objective function is to be maintained. We

need to generalize the QCR approach so that it can be applied to
roblem (P). Consider the following reformulation: 

(P(q )) min 

x,y,z 
f q � f + 

m ∑ 

i =1 

q i (A i x, z i , y i ) 

s . t . A i x − a i ≤ z i ≤ A i x − a i + b i y i , i = 1 , . . . , m, (31)

0 ≤ z, (32)

(2) , (3) , (10) , 

here q i ( · , · , · ) is a quadratic function on three variables. Note

hat the original objective function of (P) only has quadratic terms

n x . Our goal is to lift the objective function so that the quadratic

erms of all decision variables can be utilized to improve the refor-

ulation. That is why we will add a quadratic function q i ( · , · , · )

hat has quadratic terms of both y and z . 

The first question is what quadratic functions we can add to the

bjective. This is not a trivial question as we need to maintain the

quivalence to the original problem (P). We start from the follow-

ng proposition. 

roposition 5. If q i (A i x, A i x − a i , 0) = 0 and q i ( A i x , z i , 1) is a positive

ultiple of z i (z i − (A i x − a i )) , i.e., q i (A i x, z i , 1) = K i z i (z i − (A i x − a i ))

or some constant K i > 0, then the following holds true. 

(a) If ( x , y ) is a feasible solution for (P), let z i = max { A i x −
 i , 0 } , i = 1 , . . . , m, then ( x , y , z ) is a feasible solution for (P( q )) and

f (x ) = f q (x, y, z) ; 

(b) If ( x ∗, y ∗, z ∗) is an optimal solution for (P( q )), then ( x ∗, y ∗) is

 feasible solution for (P) and f (x ∗) = f q (x ∗, y ∗, z ∗) ; 
(c) v(P(q )) = v(P) . 

roof. (a) If y i = 0 , then from constraint (1) , we have A i x ≥ a i . Now

he constraint (31) will become 

 i x − a i ≤ z i ≤ A i x − a i . 

hus z i = max { A i x − a i , 0 } = A i x − a i satisfies the constraints

31) and (32) . 

If y i = 1 , then constraint (1) becomes A i x − a i + b i ≥ 0 . Now the

onstraint (31) becomes 

 i x − a i ≤ z i ≤ A i x − a i + b i . 

ecause A i x − a i + b i ≥ 0 , z i = max { A i x − a i , 0 } also satisfies the

onstraints (31) and (32) . Hence ( x , y , z ) is feasible for (P( q )). Be-

ause q i ( A i x , z i , 1) is a positive multiple of z i (z i − (A i x − a i )) , we

ave q i (A i x, z i , 1) = 0 and thus f (x ) = f q (x, y, z) . 

(b) Since ( x ∗, y ∗, z ∗) is feasible for (P( q )), the constraints

31) and (32) ensure that 0 ≤ z ∗
i 

≤ A i x 
∗ − a i − b i y 

∗
i 
, i = 1 , . . . , m .

hus ( x ∗, y ∗) satisfies constraint (1) and is feasible for (P). Next,

ince ( x ∗, y ∗, z ∗) is optimal for (P( q )), z ∗ must be optimal for the

ollowing problem: 

in 

z 

m ∑ 

i =1 

q i (A i x 
∗, z i , y ∗i ) (33)

 . t . A i x 
∗ − a i ≤ z i ≤ A i x 

∗ − a i + b i y 
∗
i , i = 1 , . . . , m, (34)

 ≤ z i , i = 1 , . . . , m, (35)

(10) . 

rom the assumption we know that q i (A i x 
∗, A i x 

∗ − a i , 0) = 0 and

 i ( A i x 
∗, z i , 1) is a positive multiple of z i (z i − (A i x 

∗ − a i )) for all

 = 1 , . . . , m . Because we are minimizing the objective function, if

 

∗
i 

= 0 , then z ∗
i 

= A i x 
∗ − a i ; if y ∗

i 
= 1 , then z ∗

i 
= max { A i x 

∗ − a i , 0 } .
hus v( (33) –(35) ) = 0 and f (x ∗) = f q (x ∗, y ∗, z ∗) . 

(c) Let ( x , y ) be the optimal solution for (P) and ( x ∗, y ∗, z ∗)

e an optimal solution for (P( q )). Define z i = max { A i x − a i , 0 } , i =
 , . . . , m . Then from the proof for part (a), ( x , y , z ) is also feasi-

le for (P( q )) and f ( x ) = f q ( x , y , z ) . Thus we have v(P) = f ( x ) =
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4 By “best”, we mean that the continuously relaxed problem should have a mini- 

mum that is as high as possible. 
f q ( x , y , z ) ≥ f q (x ∗, y ∗, z ∗) = v(P(q )) . On the other hand, from the

roof for part (b), ( x ∗, y ∗) is also feasible for (P) and f (x ∗) =
f q (x ∗, y ∗, z ∗) . Thus we have v(P) = f ( x ) ≤ f (x ∗) = f q (x ∗, y ∗, z ∗) =
(P(q )) . �

orollary 1. If q i (A i x, A i x − a i , 0) = 0 and q i ( A i x , z i , 1) is a positive

ultiple of z i (z i − (A i x − a i )) , then the following holds true. 

(a) If ( x ∗, y ∗) is an optimal solution for (P), let z i = max { A i x 
∗ −

 i , 0 } then ( x ∗, y ∗, z ) is an optimal solution for (P( q )) ; 

(b) If ( x ∗, y ∗, z ∗) is an optimal solution for (P( q )), then ( x ∗, y ∗) is

n optimal solution for (P) . 

From the proof of Proposition 5 , we can find that one way to

aintain the equivalence between problems (P( q )) and (P) is to re-

uire that: (a) the quadratic function q i ( · , · , · ) vanishes on the

et of optimal solutions for (P( q )); (b) the projection of the optimal

olution set for (P( q )) onto the ( x , y ) space is a subset of the opti-

al solution set for (P). We do not need to require the quadratic

unction q i ( · , · , · ) to vanish on the entire feasible region. This is

 prominent feature when compared to the QCR approach in the

iterature. 

Next we are going to find out the exact expression for

 i ( · , · , · ) under the conditions of Proposition 5 . Assume that 

 i (A i x, z i , y i ) = k 1 (A i x ) 
2 + k 2 z 

2 
i + k 3 y 

2 
i + k 4 A i xz i + k 5 A i xy i + k 6 z i y i 

+ k 7 A i x + k 8 z i + k 9 y i + k 10 , 

here k 1 , k 2 , . . . , k 10 are the coefficients in the quadratic function

 i ( · , · , · ). Then to ensure the conditions in Theorem 5 , that is,

 i (A i x, A i x − a i , 0) = 0 and q i ( A i x , z i , 1) is a positive multiple of

 i (z i − (A i x − a i )) , we must have 

 i (A i x, A i x − a i , 0) (36) 

= k 1 (A i x ) 
2 + k 2 (A i x − a i ) 

2 + 0 + k 4 A i x (A i x − a i ) + 0 + 0 

+ k 7 A i x + k 8 (A i x − a i ) + 0 + k 10 , 

= (A i x ) 
2 (k 1 + k 2 + k 4 ) + (A i x )(−2 a i k 2 − a i k 4 + k 7 + k 8 ) 

+ a 2 i k 2 − a i k 8 + k 10 

= 0 , (36) 

nd 

 i (A i x, z i , 1) (37) 

= k 1 (A i x ) 
2 + k 2 z 

2 
i + k 3 + k 4 A i xz i + k 5 A i x + k 6 z i 

+ k 7 A i x + k 8 z i + k 9 + k 10 , 

= (A i x ) 
2 (k 1 ) + z 2 i (k 2 ) + A i xz i (k 4 ) + A i x (k 5 + k 7 ) + z i (k 6 + k 8 ) 

+ k 3 + k 9 + k 10 

= Kz i (z i − (A i x − a i )) . 

f the equalities (36) and (37) hold for any A i and x , then the coef-

cients must satisfy the following constraints: 

k 1 + k 2 + k 4 = 0 , k 1 = 0 , 

−2 a i k 2 − a i k 4 + k 7 + k 8 = 0 , k 5 + k 7 = 0 , 

a 2 
i 
k 2 − a i k 8 + k 10 = 0 , k 3 + k 9 + k 10 = 0 , 

−K = k 4 , 
k 6 + k 8 = Ka i , 

k 2 = K, 

K ≥ 0 , 

hich can be simplified to: 

k 1 = 0 , k 8 = a i k 2 + k 5 , 
k 4 = −k 2 , k 9 = −k 3 − a i k 5 , 
k 6 = −k 5 , k 10 = a i k 5 , 
k 7 = −k 5 , k 2 ≥ 0 . 

s all the coefficients will be fixed once k 2 , k 3 and k 5 are fixed, the

egree of freedom of the coefficients is three. Replacing the letters
 2 , k 3 , k 6 by u i , v i , w i , we have the following form for q i ( A i x , z i ,

 i ): 

 i (A i x, z i , y i ; u i , v i , w i ) = v i y 2 i + u i z 
2 
i + w i A i xy i − u i A i xz i 

−w i y i z i − w i A i x + (a i u i + w i ) z i 

−(v i + a i w i ) y i + a i w i , (38) 

here u i , v i and w i are the three coefficients for q i ( · , · , · ) and

 i ≥ 0. 

From now on we assume that q i ( · , · , · ) takes the form in (38) .

hen by Proposition 5 , we have a set of equivalent reformulations

f (P) parameterized by (u, v , w ) , where u = (u 1 , . . . , u m 

) T , v =
(v 1 , . . . , v m 

) T and w = (w 1 , . . . , w m 

) T . Denote the corresponding re-

ormulation by ( P q (u, v , w ) ). 

xample 3. Consider the same original problem in Example 1 . For

iven (u, v , w ) , the corresponding reformulation (P q (u, v , w ))) is: 

in 

x,y,z 
x T 

[
7 3 

3 6 

]
x + 

[
−7 

−5 

]T 

x + 40 y 

+ v y 2 + uz 2 + w (−8 x 1 + x 2 ) y − u (−8 x 1 + x 2 ) z 

− wyz − w (−8 x 1 + x 2 ) 

+ (5 u + w ) z − (v + 5 w ) y + 5 w 

s . t . − 8 x 1 + x 2 − 5 ≤ z ≤ −8 x 1 + x 2 − 5 + 30 y, 

0 ≤ z, 

y ∈ { 0 , 1 } , x = (x 1 , x 2 ) 
T ∈ R 

2 , z ∈ R . 

We are interested in finding the best 4 parameters ( u, v , w ) by

olving the following problem: 

ax 
u, v ,w 

v( P q (u, v , w )) (39) 

 . t . u ∈ R 

m 

+ , v ∈ R 

m , w ∈ R 

m , (40) 

f q is a convex function . (41) 

ote that f q is convex if and only if the following condition on its

essian holds: 

 q � 

⎛ 

⎜ ⎝ 

Q 

1 
2 

A 

T Diag (w ) − 1 
2 

A 

T Diag (u ) 

1 
2 

Diag (w ) A Diag (v ) − 1 
2 

Diag (w ) 

− 1 
2 

Diag (u ) A − 1 
2 

Diag (w ) Diag (u ) 

⎞ 

⎟ ⎠ 

� 0 . (42) 

roposition 6. Problems (39) –(41) is equivalent to the following SDP

roblem: 

max 
,μ,σ,λ,π,ρ,u, v ,w,τ

τ (43) 

 . t . 

(
Q q 0 . 5 G 

0 . 5 G 

T a T w − d T η − a T μ + a T σ − e T π − τ

)
� 0 , 

(η, μ, σ, λ, π, ρ) ∈ R 

M 

+ × R 

m 

+ × R 

m 

+ × R 

m 

+ × R 

m 

+ × R 

m 

+ , 
(44) 

(u, v , w, τ ) ∈ R 

m × R 

m × R 

m × R , (45) 

here 

 = 

( 

c − A 

T w + B 

T η + A 

T μ − A 

T σ
h − v − Diag (a ) w + D 

T η − Diag (b) σ − λ + π
Diag (a ) u + w − μ + σ − ρ

) 

. 

roof. Associate the following multipliers to the constraints in

( P q (u, v , w )) : 
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• η ∈ R 

M + for Bx + Dy ≤ d; 
• μi and σi ∈ R + for A i x − a i ≤ z i and z i ≤ A i x − a i + b i y i , respec-

tively, i = 1 , . . . , m ; 
• λi and πi ∈ R + for y i ≥ 0 and y i ≤ 1, respectively, i = 1 , . . . , m ; 
• ρi ∈ R + for z i ≥ 0, i = 1 , . . . , m . 

Let μ = (μ1 , . . . , μm 

) T , σ = (σ1 , . . . , σm 

) T , λ = (λ1 , . . . , λm 

) T ,

π = (π1 , . . . , πm 

) T and ρ = (ρ1 , . . . , ρm 

) T . Then, the Lagrangian

function of ( P q (u, v , w )) is given by 

L (·) = L (x, y, z;η, μ, σ, λ, π, ρ; u, v , w ) 

= x T Qx + c T x + h 

T y + 

m ∑ 

i =1 

[ u i z 
2 
i + v i y 2 i − u i A i xz i + w i A i xy i 

−w i z i y i − w i A i x + (a i u i + w i ) z i − (v i + a i w i ) y i + a i w i ] 

+ ηT (Bx + Dy − d) + 

m ∑ 

i =1 

μi (A i x − a i − z i ) 

+ 

m ∑ 

i =1 

σi (z i − A i x + a i − b i y i ) 

+ 

m ∑ 

i =1 

λi (−y i ) + 

m ∑ 

i =1 

πi (y i − 1) − ρT z 

= x T Qx + (c − A 

T w + B 

T η + A 

T μ − A 

T σ ) T x 

+ y T Diag (v ) y + (h − v − Diag (a ) w + D 

T η

−Diag (b) σ − λ + π) T y 

+ z T Diag (u ) z + ( Diag (a ) u + w − μ + σ − ρ) T z 

+ x T (A 

T Diag (w )) y + x T (−A 

T Diag (u )) z + z T (−Diag (w )) y 

+ a T w − d T η − a T μ + a T σ − e T π. 

Because the Slater condition is satisfied, problems (39) –(41) is

equivalent to the following problem by Lagrangian duality: 

max 
(u, v ,w ) ∈ R m ×R m ×R m , (42) , (44) 

{
min 

(x,y,z) ∈ R n ×R m ×R m 
L (·) 

}
. (46)

If (42) does not hold, then the inner minimization of problem

(46) is an unconstrained non-convex quadratic minimization prob-

lem and its optimal value is −∞ . Thus, problem (46) can be sim-

plified to: 

max 
(u, v ,w ) ∈ R m ×R m ×R m , (44) 

{
min 

(x,y,z) ∈ R n ×R m ×R m 
L (·) 

}
. (47)

Following Corollary 4.2 in Lemaréchal and Oustry (1999) , problem

(47) is equivalent to the SDP problems (43) –(45) . �

5. Tightness of the new reformulation 

In order to explore the tightness of our new reformulation, we

compare in this section our new reformulation with (P2R( θ )) and

then (P1R( θ )), both of which are presented in Section 2 . 

In fact, (P2R( θ )) is a special case of the new reformulation

(P( q )). To see this, we replace the variable z i in (P( q )) by A i x − a i −
z i + a i y i and get the following equivalent reformulation: 

( P 

′ 
q (u, v , w ))) min 

x,y,z 
f ′ q � f + 

m ∑ 

i =1 

[(a 2 i u i + v i − a i w i ) y 
2 
i + u i z 

2 
i 

+ a i u i A i xy i − u i A i xz i + (w i − 2 a i u i ) y i z i 

+ (−a 2 i u i + a i w i − v i ) y i ) + (a i u i − w i ) z i ] 

s . t . (2) , (3) , (10) , (6) , (15) . 
hen one can check that (P2R( θ )) is a special case of the above

roblem with the following simple substitutions, 

u i = 2 θi 

v i = a 2 i θi 

 i = 2 a i θi . 

hus the objective value of problem (24) would be smaller or

qual to the objective value of the SDP problems (43) –(45) and

ur new reformulation will be tighter than (P2R( θ )). That is, the

ower bound from the continuous relaxation of (P2R( θ )) where θ is

rom problem (24) is not as tight as the lower bound from the con-

inuous relaxation of our new reformulation (P q (u ∗, v ∗, w 

∗)) where

(u ∗, v ∗, w 

∗) is extracted from the optimal solution of the SDP prob-

ems (43) –(45) . 

Next, we compare our new reformulation with (P1R( θ )). 

roposition 7. Suppose that θ ∗ is an optimal solution for problem

16) , and ( x ∗, y ∗, z ∗, φ∗) is an optimal solution for ( P1R (θ ∗)) . Define

 , v , w ∈ R 

m with 

 i = 2 θ ∗
i , i = 1 , . . . , m, (48)

 i = 

{
θ ∗

i 
a 2 

i 
if y ∗

i 
= 0 , 

θ ∗
i 
(a i − z ∗

i 

y ∗
i 

) 2 otherwise , 
i = 1 , . . . , m, (49)

 i = 

{
2 θ ∗

i 
a i if y ∗

i 
= 0 , 

2 θ ∗
i 
(a i − z ∗

i 

y ∗
i 

) otherwise , 
i = 1 , . . . , m. (50)

hen the following holds true. 

(a) The objective function of ( P ′ q ( u , v , w )) is convex; 

(b) ( x ∗, y ∗, z ∗) is also optimal for ( P ′ q ( u , v , w )) ; 

(c) v( P ′ q ( u , v , w )) = v ( P1R (θ ∗)) . 

roof. a) For the convexity of the objective function, we only need

o consider the quadratic terms. Because θ ∗ is a feasible solution

or problem (16) , the objective function of ( P1R (θ ∗)) must be con-

ex. Compared with the quadratic terms of the objective function

f ( P1R (θ ∗)) , the objective function of ( P ′ q ( u , v , w )) has additional

uadratic terms 

m 

 

i =1 

θ ∗
i ( 

z ∗
i 

y ∗
i 

y i − z i ) 
2 . 

ince θ ∗ ≥ 0, the objective function of ( P ′ q ( u , v , w )) is a summation

f convex functions and thus must be convex. 

b) From the formulation of problem ( P1R (θ ∗)) , we must have 

∗
i = 

z ∗2 
i 

y ∗
i 

, (51)

ince θ ∗ ≥ 0. Consider the following auxiliary problem: 

( P1R 

′ (θ ∗)) min 

x,y,z 
f ′ 1 r � f + 

m ∑ 

i =1 

θ ∗
i (a 2 i y 

2 
i + z 2 i + 2 a i A i xy i − 2 A i xz i 

− 2 a i y i z i + 

z 2 
i 

y i 
− a 2 i y i ) 

s . t . (2) , (3) , (10) , (6) , (15) . 

s ( x ∗, y ∗, z ∗, φ∗) is an optimal solution of ( P1R (θ ∗)) , ( x ∗, y ∗, z ∗)

s also feasible for ( P1R 

′ (θ ∗)) and f 1 r (x ∗, y ∗, z ∗, φ∗) = f ′ 1 r (x ∗, y ∗, z ∗)
ue to Eq. (51) , thus 

( P1R (θ ∗)) = f 1 r (x ∗, y ∗, z ∗, φ∗) = f ′ 1 r (x ∗, y ∗, z ∗) ≥ v( P1R 

′ (θ ∗)) . 
(52)
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n the other hand, if ( ̂  x , ̂  y , ̂  z ) is optimal for ( P1R 

′ (θ ∗)) , then

( ̂  x , ̂  y , ̂  z , ˆ φ) is feasible for ( P1R (θ ∗)) , where 

ˆ 
i � 

{
0 if ˆ y i = 0 , 
ˆ z 2 

i 

ˆ y i 
if ˆ y i > 0 . 

i = 1 , . . . , m. (53) 

lso, by comparing the two objective functions, we have

f 1 r ( ̂  x , ̂  y , ̂  z , ˆ φ) = f ′ 1 r ( ̂  x , ̂  y , ̂  z ) . Hence 

( P1R (θ ∗)) ≤ f 1 r ( ̂  x , ̂  y , ̂  z , ˆ φ) = f ′ 1 r ( ̂  x , ̂  y , ̂  z ) = v( P1R 

′ (θ ∗)) . (54) 

rom inequalities (52) and (54) , we have v( P1R 

′ (θ ∗)) = v( P1R (θ ∗))
nd thus ( x ∗, y ∗, z ∗) is also optimal for ( P1R 

′ (θ ∗)) . 
To show that ( x ∗, y ∗, z ∗) is also optimal for ( P ′ q ( u , v , w )) , we

ompare the gradients of the objective functions of ( P ′ q ( u , v , w ))

nd ( P1R 

′ (θ ∗)) at the point ( x ∗, y ∗, z ∗). Denote the component in

 gradient vector ∇g of a function g corresponding to the variable

 i by (∇g) x i . Then we have 

(∇ f ′ q (x ∗, y ∗, z ∗; u , v , w )) x i 

= 

∂(x T Qx + c T x + 

∑ m 

i =1 (a i u i A i xy i − u i A i xz i )) 

∂x i 

∣∣∣
x ∗,y ∗,z ∗

= 

∂(x T Qx + c T x + 

∑ m 

i =1 θ
∗
i 
(2 a i A i xy i − 2 A i xz i )) 

∂x i 

∣∣∣
x ∗,y ∗,z ∗

= (∇ f ′ 1 r (x ∗, y ∗, z ∗; θ ∗)) x i , 

(∇ f ′ q (x ∗, y ∗, z ∗; u , v , w )) y i 

= 

∂( 
∑ m 

i =1 ((a 2 
i 
u i + v i − a i w i ) y 

2 
i 

+ a i u i A i xy i 
+ ( w i − 2 a i u i ) y i z i + (−a 2 

i 
u i + a i w i − v i ) y i )) 

∂y i 

∣∣∣
x ∗,y ∗,z ∗

= 

m ∑ 

i =1 

( 

2 θ ∗
i 

( 

2 a 2 i + 

(
a i −

z ∗
i 

y ∗
i 

)2 

− a i 2 

(
a i −

z ∗
i 

y ∗
i 

)) 

y i + a i 2 θ ∗
i A i x 

+ 2 θ ∗
i 

((
a i −

z ∗
i 

y ∗
i 

)
− 2 a i 

)
z i + θ ∗

i 

(
−2 a 2 i + a i 2 

(
a i −

z ∗
i 

y ∗
i 

)

−
(

a i −
z ∗

i 

y ∗
i 

)2 
) ) ∣∣∣

x ∗,y ∗,z ∗

= 

m ∑ 

i =1 

(
2 θ ∗

i 

(
a 2 i + 

z ∗2 
i 

y ∗2 
i 

)
y ∗i + a i 2 θ ∗

i A i x 
∗

+ 2 θ ∗
i 

(
− z ∗

i 

y ∗
i 

− a i 

)
z ∗i − θ ∗

i 

(
a 2 i + 

z ∗2 
i 

y ∗2 
i 

))

= 

m ∑ 

i =1 

θ ∗
i 

(
2 a 2 i y 

∗
i + 2 a i A i x 

∗ − 2 a i z 
∗
i −

z ∗2 
i 

y ∗2 
i 

− a 2 i 

)

= 

m ∑ 

i =1 

θ ∗
i 

(
2 a 2 i y i + 2 a i A i x − 2 a i z i −

z 2 
i 

y 2 
i 

− a 2 i 

)∣∣∣
x ∗,y ∗,z ∗

= 

∂ 
(∑ N 

i =1 θ
∗
i 

(
a 2 

i 
y 2 

i 
+ 2 a i A i xy i − 2 a i y i z i + 

z 2 
i 

y i 
− a 2 

i 
y i 

))
∂y i 

∣∣∣
x ∗,y ∗,z ∗

= (∇ f ′ 1 r (x ∗, y ∗, z ∗; θ ∗)) y i , 

nd 
(∇ f ′ q (x ∗, y ∗, z ∗; u , v , w )) z i 

 

∂ 
(∑ m 

i =1 ( u i z 
2 
i 

− u i A i xz i + ( w i − 2 a i u i ) y i z i + (a i u i − w i ) z i ) 
)

∂z i 

∣∣∣
x ∗,y ∗,z ∗

= 

N ∑ 

i =1 

(
4 θ ∗

i z i − 2 θ ∗
i A i x + 2 θ ∗

i 

((
a i −

z ∗
i 

y ∗
i 

)
− 2 a i 

)
y i 

+ 

(
2 a i θ

∗
i − 2 θ ∗

i 

(
a i −

z ∗
i 

y ∗
i 

)))∣∣∣
x ∗,y ∗,z ∗

= 

m ∑ 

i =1 

(
4 θ ∗

i z i − 2 θ ∗
i A i x 

∗ + 2 θ ∗
i 

(
−a i −

z ∗
i 

y ∗
i 

)
y ∗i 

+ 

(
2 a i θ

∗
i − 2 θ ∗

i 

(
a i −

z ∗
i 

y ∗
i 

)))

= 

m ∑ 

i =1 

θ ∗
i 

(
2 z ∗i − 2 A i x 

∗ − 2 a i y 
∗
i + 2 

z ∗
i 

y ∗
i 

)

= 

m ∑ 

i =1 

θ ∗
i 

(
2 z i − 2 A i x − 2 a i y i + 2 

z i 
y i 

)∣∣∣
x ∗,y ∗,z ∗

= 

∂ 
(∑ m 

i =1 θ
∗
i 

(
z 2 

i 
− 2 A i xz i − 2 a i y i z i + 

z 2 
i 

y i 

))
∂z i 

∣∣∣
x ∗,y ∗,z ∗

= (∇ f ′ 1 r (x ∗, y ∗, z ∗; θ ∗)) z i . 

o ∇ f ′ q (x ∗, y ∗, z ∗; u , v , w ) = ∇ f ′ 
1 r 

(x ∗, y ∗, z ∗; θ ∗) . As ( x ∗, y ∗, z ∗) is op-

imal to problem ( P1R 

′ (θ ∗)) , the directional derivative of the ob-

ective function at ( x ∗, y ∗, z ∗) along any feasible direction should

e non-negative. Since the feasible regions of ( P ′ q ( u , v , w )) and

( P1R 

′ (θ ∗)) are the same, the directional derivative of the objec-

ive function of ( P ′ q ( u , v , w )) at ( x ∗, y ∗, z ∗) along any feasible di-

ection is also non-negative. So ( x ∗, y ∗, z ∗) must also be optimal

or ( P ′ q ( u , v , w )) because of the convexity of the objective func-

ion. (See e.g., Chapter 2.1 of Borwein & Lewis, 2006 .) 

c) From (b), we only need to compare the objective values of

( P1R 

′ (θ ∗)) and ( P ′ q ( u , v , w )) at the optimal point ( x ∗, y ∗, z ∗): 

f ′ 1 r (x ∗, y ∗, z ∗; θ ∗) − f ′ q (x ∗, y ∗, z ∗; u , v , w ) 

= f + 

m ∑ 

i =1 

θ ∗
i 

(
a 2 i y 

∗2 
i + z ∗2 

i + 2 a i A i x 
∗y ∗i − 2 A i x 

∗z ∗i − 2 a i y 
∗
i z 

∗
i 

+ 

z ∗2 
i 

y ∗
i 

− a 2 i y 
∗
i 

)

−
( 

f + 

m ∑ 

i =1 

(
u i z 

∗2 
i + (a 2 i u i + v i − a i w i ) y 

2 
i + a i u i A i x 

∗y ∗i − u i A i x 
∗z ∗i 

+ ( w i − 2 a i u i ) y 
∗
i z 

∗
i + (−a 2 i u i + a i w i − v i ) y ∗i + (a i u i − w i ) z 

∗
i 

)) 

= 

m ∑ 

i =1 

θ ∗
i 

(
a 2 i y 

∗2 
i + z ∗2 

i + 2 a i A i x 
∗y ∗i − 2 A i x 

∗z ∗i − 2 a i y 
∗
i z 

∗
i 

+ 

z ∗2 
i 

y ∗
i 

− a 2 i y 
∗
i 

)

−
( 

m ∑ 

i =1 

(
θ ∗

i 

(
a 2 i + 

z ∗2 
i 

y ∗2 
i 

)
y ∗2 

i + 2 θ ∗
i z 

∗2 
i + 2 a i θ

∗
i A i x 

∗y ∗i − 2 θ ∗
i A i x 

∗z ∗i 

− 2 θ ∗
i 

(
z ∗

i 

y ∗
i 

+ a i 

)
y ∗i z 

∗
i − θ ∗

i 

(
a 2 i + 

z ∗2 
i 

y ∗2 
i 

)
y ∗i 
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6 Our computing environment has changed during the review process of the pa- 
+ 

(
2 a i θ

∗
i − 2 θ ∗

i 

(
a i −

z ∗
i 

y ∗
i 

))
z ∗i 

))
= 0 . 

This completes the proof. �

The following corollary can be easily obtained from

Proposition 7 . 

Corollary 2. v (39) ≥ v (16) . 

The above corollary indicates that our new reformulation is

at least as tight as the reformulation (P1R( θ )). That is, the lower

bound from the continuous relaxation of (P1R( θ )), where θ is from

the optimal solution of problem (16) , is not as tight as the lower

bound from the continuous relaxation of our new reformulation

(P q (u, v , w )) where (u, v , w ) is extracted from the optimal solution

of problem (39) . 

6. Computational experiment 

In this section we conduct numerical tests on a set of randomly

generated instances to demonstrate the effectiveness of our new

reformulation solved in standard MIQP solvers. 

6.1. Test problems 

We consider two sets of test problems in our experiments. 

Set A: We build 30 instances for each problem size n ∈ {100,

20 0, 30 0, 40 0} and set m = M = n/ 2 . The 30 instances for

each problem size are evenly divided into three groups.

For different groups, the matrix Q in the objective func-

tion is generated with different diagonal dominance using

the method in Frangioni and Gentile (2007) and Pardalos

and Rodgers (1990) . The three groups are labeled using su-

perscript in the set { + , 0 , −} , from most diagonally dom-

inant to least diagonally dominant. c i is generated uni-

formly from the interval: 
[
− 1 

2 

√ ∑ 

i, j | Q i j | , 1 
2 

√ ∑ 

i, j | Q i j | 
]
. h i 

is generated uniformly from the interval: [0, i , j | Q ij |]. A ij 

is generated uniformly from the interval: [ −0 . 5 , 0 . 5 ] . a i is

generated uniformly from the interval: [0, n ]. b i is generated

uniformly from the interval: [0, 10 n ]. B ij and D ij are generated

uniformly from the interval: [ −0 . 5 , 0 . 5 ] . d i is generated uni-

formly from the interval: [ −0 . 5 n, 0 . 5 n ] . 

Set B: The second set of test problems is generated as follows:

The matrix Q in the objective function is generated in the

same way as in Set A. c i is generated from a normal distribu-

tion with mean 0 and standard deviation 

1 
2 

√ ∑ 

i, j | Q i j | . h i is

generated from a normal distribution with mean 0.5 i , j | Q ij |

and standard deviation 0.5 i , j | Q ij |. A ij is generated from a

normal distribution with mean 0 and standard deviation

0.5. a i is generated from a normal distribution with mean

0.5 n and standard deviation 0.5 n . b i is generated from a nor-

mal distribution with mean 5 n and standard deviation 5 n . B ij 
and D ij are generated from a normal distribution with mean

0 and standard deviation 0.5. d i is generated from a normal

distribution with mean 0 and standard deviation 0.5 n . 

6.2. Performance of reformulations 

We compare the following three approaches in the numerical

tests 5 : 
5 We do not report the results for the reformulation (P1R( θ )) here as Hsia et al. 

(2014) has shown that (P1( θ )) is strictly dominated by (P2( θ )) in the numerical per- 

formance. Similar results were obtained when we compared (P1R( θ )) and (P2R( θ )). 

p

t

a

t

• (P): The original formulation; 
• (P2R( θ )): The reduced version of the MIQP reformulation in

Hsia et al. (2014) with θ obtained from solving the SDP prob-

lems (26) –(28) ; 
• (P q (u, v , w )) : 

• For Set A: Our new reformulation with (u, v , w ) obtained

from solving the SDP problems (43) –(45) . 
• For Set B: Our new reformulation with ( u , v , w ) from

Proposition 7 , which can be obtained by solving the SDP

problems (18) –(21) and then solving the second-order

cone programming (SOCP) problem ( P1R (θ ∗)) . Because the

SDP problems (18) –(21) has a smaller size than the SDP

problems (43) –(45) , the time spent on parameter finding

would be smaller. From Proposition 7 , the lower bound from

(P q ( u , v , w )) would be the same as that from ( P1R (θ ∗)) . We

use a different approach for Set B here to demonstrate that

the process of parameter findings can be of interest in its

own right, and how to find good parameters more efficiently

could be an interesting future research topic. 

The computation for Set A is conducted on a Linux server with

8 gigabytes of RAM. All the tests are confined on one single

hread (2.99 gigahertz). SDP problems are solved using sedumi
nterfaced by CVX 1.21 ( CVX Research, 2012; Grant & Boyd, 2008 )

n Matlab R2012b . The three MIQP reformulations are solved in

4-bit IBM ILOG CPLEX Optimization Studio 12.6 (Here-

nafter referred to as CPLEX ) through its Matlab interface. The

omputation for Set B is conducted on a Linux server with 64 gi-

abytes of RAM. All the tests are confined on one single thread

Intel(R) Xeon(R) CPU E5-2692 v2 @ 2.20 gigahertz). SDP prob-

ems are solved using sedumi interfaced by CVX 2.1 on Matlab
2015b . The three MIQP reformulations are solved in 64-bit IBM
LOG CPLEX Optimization Studio 12.8 6 . 

We use the default setting in CPLEX with CPU time limit set

o 3600 seconds. So the program would terminate either when the

PU time reaches 3600 seconds or when the relative gap (between

he objective values of the incumbent solution and the best lower

ound) is below the default tolerance threshold 10 −4 (The exact

alue of the relative gap when CPLEX terminates could range be-

ween 0 and 10 −4 . Rounding this number to four significant digits

ould make it 0 or 10 −4 ). 

Tables 1 and 2 show the numerical results for the problem in-

tances we generated. Each line reports the average results for the

0 instances in a subset. The notations in the tables are given as

ollows: The column “(time 2 r )” is the computing time for the SDP

roblems (26) –(28) . The column “(time q )” in Table 1 is the com-

uting time for the SDP problems (43) –(45) . The column “(time 1 r )”

n Table 2 is the total computing time for the SDP problems (18) –

21) and the SOCP problem ( P1R (θ ∗)) . The columns “time”, ”gap”

nd “nodes” are the computing time (in seconds), relative gap

nd the number of nodes explored by CPLEX respectively. The

olumn “max” is the maximum computing time among the 10

nstances averaged. The column “min” is the minimum comput-

ng time among the 10 instances averaged. The column “uns” is

umber of instances unsolved among the 10 instances averaged,

.e., CPLEX terminates after 3600 seconds before solving those in-

tances to optimality 7 . The column “total” under (P2R)( θ ) is the

ummation of “time” and “(time 2 r )”. The column “total” under

P) q (u, v, w) in Table 1 is the summation of “time” and “(time q )”.
er. Thus we have different computing settings for Set A and Set B. It turns out that 

he numerical comparisons for Set A and Set B are similar to each other. 
7 As pointed out by one referee, setting a 3600-second time limit could skew the 

verage downwards. Our focus here is not the exact amount of time needed, but 

he relative performance of different reformulations. 
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Fig. 1. Comparison of computing time for the test set A. 

Fig. 2. Comparison of computing time for the test set B. 
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Table 1 

Performance of MIQP reformulations on the test set A. 

n time 2 r time q (P) (P2R( θ )) (P q (u, v , w ) 

Time Max Min uns Gap Node Time Max Min uns Total Gap Node Time Max Min uns Total Gap Node 

100 + 7.5 13.3 6.1 22.5 1.4 0 0.0 0 0 0 3437 1.3 2.9 0.8 0 8.8 0.0 0 0 0 85 1.1 1.4 1.0 0 14.4 0.0 0 0 0 19 

100 0 7.4 12.7 15.7 55.7 1.7 0 0.0 0 01 9996 2.4 6.4 0.9 0 9.8 0.0 0 0 0 334 1.3 2.4 1.1 0 14.0 0.0 0 0 0 54 

100 − 7.3 10.4 26.7 77.1 2.5 0 0.0 0 01 17340 3.3 8.7 0.9 0 10.5 0.0 0 0 0 594 1.6 2.6 1.0 0 12.0 0.0 0 0 0 91 

200 + 77.2 115.1 1858.8 3600.0 215.8 2 0.0048 295087 24.0 58.1 9.3 0 101.2 0.0 0 01 938 6.1 10.3 3.1 0 121.2 0.0 0 01 91 

200 0 103.5 139.9 3317.2 3600.0 1212.5 8 0.0360 581763 39.8 80.3 13.5 0 143.2 0.0 0 01 1656 7.1 11.3 4.0 0 147.0 0.0 0 01 153 

200 − 72.9 108.2 3600.0 3600.0 3600.0 10 0.0653 690213 92.2 191.3 19.2 0 165.1 0.0 0 01 4594 11.8 23.7 5.1 0 120.0 0.0 0 01 454 

300 + 320.1 443.9 3600.0 3600.0 3600.0 10 0.1080 343506 714.7 2642.8 80.0 0 1034.8 0.0 0 01 10750 51.1 118.5 14.4 0 495.0 0.0 0 01 665 

300 0 326.7 425.2 3600.0 3600.0 3600.0 10 0.1689 363285 2277.0 3600.0 539.5 4 2603.7 0.0027 50212 213.8 683.3 50.2 0 639.0 0.0 0 01 4533 

300 − 305.8 407.2 3600.0 3600.0 3600.0 10 0.1998 369726 3079.8 3600.0 487.9 8 3385.6 0.0066 78310 636.2 3600.0 43.6 1 1043.4 0.0 0 03 16235 

400 + 1095.4 1314.5 3600.0 3600.0 3600.0 10 0.1560 221302 2714.9 3600.0 615.1 6 3810.4 0.0043 17097 393.5 1387.6 56.1 0 1708.0 0.0 0 01 3346 

400 0 989.8 1188.7 3600.0 3600.0 3600.0 10 0.2211 218623 3213.8 3600.0 1005.5 8 4203.7 0.0122 14928 1912.6 3600.0 79.9 4 3101.3 0.0 0 05 20612 

400 − 1046.5 1249.4 3600.0 3600.0 3600.0 10 0.2545 212053 3564.2 3600.0 3241.6 9 4610.7 0.0214 12729 2627.6 3600.0 154.5 7 3877.0 0.0023 32960 

Table 2 

Performance of MIQP reformulations on the test set B. 

n time 2 r time 1 r (P) (P2R( θ )) (P q (u, v , w ) 

Time Max Min uns Gap Node Time Max Min uns Total Gap Node Time Max Min uns Total Gap Node 

100 + 10.9 14.1 2.9 10.4 1.3 0 0.0 0 0 0 953 1.8 3.7 1.0 0 12.7 0.0 0 0 0 126 1.9 2.5 1.1 0 16.0 0.0 0 0 0 32 

100 0 11.0 14.4 4.6 11.8 0.8 0 0.0 0 0 0 1779 2.1 3.6 1.3 0 13.1 0.0 0 0 0 145 1.6 2.7 1.1 0 16.0 0.0 0 0 0 45 

100 − 10.2 14.7 8.8 30.2 1.4 0 0.0 0 0 0 3505 2.5 6.2 1.1 0 12.8 0.0 0 0 0 306 1.7 2.7 1.1 0 16.3 0.0 0 0 0 64 

200 + 98.8 133.9 682.0 3600.0 41.6 1 0.0013 60411 33.0 56.0 19.3 0 131.8 0.0 0 01 1003 5.0 7.5 3.2 0 139.0 0.0 0 01 143 

200 0 100.1 131.5 1728.8 3600.0 243.3 2 0.0035 138279 80.9 165.4 31.4 0 181.0 0.0 0 01 2683 11.8 27.2 5.8 0 143.3 0.0 0 01 490 

200 − 98.8 124.5 2241.6 3600.0 139.7 5 0.0113 196940 174.9 652.8 16.2 0 273.7 0.0 0 01 4260 16.8 37.8 4.3 0 141.3 0.0 0 01 840 

300 + 421.4 532.2 3600.0 3600.0 3600.0 10 0.0426 145485 944.3 1735.9 152.7 0 1365.7 0.0 0 01 10784 66.7 113.1 20.4 0 598.9 0.0 0 01 1708 

300 0 428.1 559.7 3600.0 3600.0 3600.0 10 0.0719 168636 1747.7 3600.0 361.5 2 2175.8 0.0019 21585 101.0 141.0 41.0 0 660.7 0.0 0 01 1865 

300 − 465.7 559.7 3600.0 3600.0 3600.0 10 0.0820 162665 1649.1 3600.0 277.0 2 2114.9 0.0021 20918 216.7 613.3 41.6 0 776.4 0.0 0 01 3861 

400 + 1469.0 1670.1 3600.1 3600.0 3600.0 10 0.0745 98388 2302.9 3600.0 487.1 4 3771.9 0.0024 12096 285.2 1331.3 49.9 0 1955.3 0.0 0 01 2378 

400 0 1380.0 1735.1 3600.1 3600.0 3600.0 10 0.1074 97926 3488.9 3600.0 2488.0 9 4 86 8.9 0.0072 24386 261.3 427.3 68.5 0 1996.4 0.0 0 01 2211 

400 − 1435.0 1655.6 3600.1 3600.0 3600.0 10 0.1160 89581 3521.9 3600.0 3181.8 8 4956.9 0.0133 20435 936.1 3283.0 99.5 0 2591.7 0.0 0 01 8205 
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H  
he column “total” under (P) q (u, v, w) in Table 2 is the summation

f “time” and “(time 1 r )”. The following are the main observations: 

• For approaches using (P) and (P2R( θ )), the test problems with

less diagonally dominant Q in the objective function tend to

be harder to solve and requires more computing time. But the

approach using (P q (u, v , w )) is less sensitive to this diagonal

dominance. 
• When the problem size is 100, the performance of (P) is ac-

ceptable. After accounting for the SDP calculation time, the

three approaches perform more or less the same in terms of

the total computing time. When the problem size is larger, the

performance or (P) is quite poor compared to the other two

approaches 8 . 
• If the SDP computing time is not accounted for, the reformu-

lation (P q (u, v , w )) performs best on average in nearly all the

lines (except for the first line in Table 2 ). Figs. 1 and 2 com-

pare the time (in logarithmic scale 9 ) used by CPLEX in solv-

ing different reformulations. Error bars are used to mark the

“max” and ”min” columns in Tables 1 and 2 . The reformulation

(P q (u, v , w )) performs better than the other two reformulations

on both test sets, even though we use two different approaches

to obtain the parameters (u, v , w ) . 
• After accounting for the SDP computing time, the second ap-

proach using the reformulation (P2R( θ )) performs similar to the

third approach using the reformulation (P q (u, v , w )) when the

problem size is 100 or 200. When the problem size is 300

or 400, the third approach using (P q (u, v , w )) performs better

with less computing time and smaller gaps. This confirms the

effectiveness of our new reformulation. 

. Conclusions 

To tackle the NP-hard quadratic programming problems with

n–off constraints, we have generalized the quadratic convex refor-

ulation (QCR) approach in the literature to derive a new mixed-

nteger quadratic programming (MIQP) reformulation that can be

ore efficiently solved by standard MIQP solvers. More specifically,

hile the objective functions in the original problem (P) and the

wo reformulations (P1( θ )) and (P2( θ )) only involve a quadratic

erm in x , our new reformulation lifts the original objective func-

ion to a quadratic function of both x , y and additional auxiliary

ecision variable z and ensures its convexity. Compared to the con-

entional QCR approach that requires the added quadratic func-

ion to vanish in the entire feasible region, our approach only re-

uires the added quadratic function to vanish in the set of opti-

al solutions. Under such an increased dimension of freedom in

eformulation, we have derived a more general set of quadratic

unctions that can be added to the objective function by exploit-

ng the structure in the “on/off” inequality constraints. To search

or the best quadratic function that can be used to construct the

ew reformulation, we only need to solve an SDP problem. Af-

er obtaining the parameters, the new reformulation can be read-

ly plugged into and solved by any standard MIQP solver. The ad-

antage of the new reformulation is that its continuous relaxation

rovides a much tighter lower bound than that from the origi-

al standard MIQP formulation, thus accelerating the branch-and-

ound process in the MIQP solvers. Our computational tests have

erified that, when solved in standard MIQP solvers, our new refor-

ulation performs better than the standard formulation and the
8 In our randomly generated numerical instance, m = M = n/ 2 . Thus the number 

he on/off constraints and other linear constraints grows linear with n . If we limit 

he number of the on/off constraints and other linear constraints, CPLEX could per- 

orm well with the formulation (P). 
9 We use a logarithmic scale (base 10) in the y-axis because the normal scale 

ould obscure the n = 100 cases. 

H  

 

H  

 

H  
eformulations in the literature significantly when the number of

n/off constraints is large, because more on/off constraints leads to

elatively tighter lower bounds from our new reformulation. In a

roader sense, our reformulation approach in this paper general-

zes the framework of the QCR approach via providing additional

echanism to derive tight and effective reformulations to tackle

ard MIQP problems. 
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