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Abstract. The extended trust region subproblem (ETRS) of minimizing a quadratic objec-
tive over the unit ball with additional linear constraints has attracted a lot of attention in
the last few years because of its theoretical significance and wide spectra of applications.
Several sufficient conditions to guarantee the exactness of its semidefinite programming
(SDP) relaxation have been recently developed in the literature. In this paper, we consider
a generalization of the extended trust region subproblem (GETRS), in which the unit ball
constraint in the ETRS is replaced by a general, possibly nonconvex, quadratic constraint,
and the linear constraints are replaced by a conic linear constraint. We derive sufficient
conditions for guaranteeing the exactness of the SDP relaxation of the GETRS under mild
assumptions. Our main tools are two classes of convex relaxations for the GETRS based on
either a simultaneous diagonalization transformation of the quadratic forms or linear com-
binations of the quadratic forms. We also compare our results to the existing sufficient con-
ditions in the literature. Finally, we extend our results to derive a new sufficient condition
for the exactness of the SDP relaxation of general diagonal quadratically constrained quad-
ratic programs, where each quadratic function is associatedwith a diagonal matrix.

Funding: This work was supported by the National Natural Science Foundation of China [Grants
11801087, 12171100, 72161160340]; Hong Kong Research Grants Council [Grants 14213716 and
14202017]; and Natural Science Foundation of Shanghai [Grant 22ZR1405100].

Keywords: quadratically constrained quadratic programming • extended trust region subproblem • semidefinite programming •
second order cone programming

1. Introduction
We consider the following quadratically constrained quadratic program (QCQP),

min f1(z) :� 1
2
zTCz + cTz

such that (s:t:) f2(z) :� 1
2
zTBz + bTz + e ≤ 0, (P0)

ATz − d≤K 0,

where C and B are n × n symmetric matrices, not necessary positive semidefinite (p.s.d.); A is an n × m matrix;
c, b ∈ R

n, e ∈ R, d ∈ R
m and ≤K is the generalized inequality associated with a proper (convex, closed, pointed,

and with a nonempty interior) cone K. When K � R
n
+, that is, the nonnegative orthant, the inequality ATz− d≤K 0

becomes the usual inequality ATz− d ≤ 0. Problem (P0) is nonconvex because both the quadratic objective and
the quadratic constraint may be nonconvex. In fact, Problem (P0) is in general NP-hard even when there is no
quadratic constraint (Pardalos [31]). When m is fixed, K � R

n
+, and the quadratic constraint reduces to a unit ball;

Problem (P0) has been proved to be polynomially solvable (Bienstock and Michalka [5], Hsia and Sheu [16]).
When there is no conic linear constraint and the quadratic constraint f2(z) ≤ 0 is a unit ball, Problem (P0)

reduces to the classical trust region subproblem (TRS). The TRS first arises in the trust region method for uncon-
strained optimization problems (Conn et al. [10]) and also admits important applications in robust optimization
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(Ben-Tal and Nemirovski [4]). Various methods have been developed to solve the TRS (Hazen and Koren [14],
Martinez [26], Moré and Sorensen [28], Rendl and Wolkowicz [33], Ye [39]). When there is no additional conic
linear constraint, Problem (P0) reduces to the generalized trust region subproblem (GTRS), which is also a well-
studied subject in the literature. Although it is nonconvex, GTRS enjoys hidden convexity and thus can be solved
as fast as solving a convex problem, because of the celebrated S-lemma (Yakubovich [37]). Over the past two dec-
ades, numerous methods have been developed for solving the GTRS under mild assumptions; see Ben-Tal and
Teboulle [3], Feng et al. [12], Moré [27], Stern and Wolkowicz [34], and Sturm and Zhang [35]. Very recently, Ben-
Tal and den Hertog [1] demonstrated that the GTRS admits a second order cone programming (SOCP) reformula-
tion when the two quadratic forms are simultaneously diagonalizable (SD); that is, there exists a nonsingular matrix
U such that UTCU and UTBU both become diagonal matrices, where the superscript T denotes the transpose of a
matrix. The finding in Ben-Tal and den Hertog [1] motivated our previous work [23] to fully characterize the GTRS
by deriving a necessary condition, using a canonical form of two real symmetric matrices, under which the GTRS is
bounded from below, and revealing that the GTRS is SOCP representable under such a condition. Moreover, in
another of our earlier work [21], we also derived a new convex reformulation for the GTRS and developed an effi-
cient solution algorithm. We further proved the linear time solvability of the GTRS in terms of its nonzero entries of
the matrices in a recent work [22]. When the quadratic constraint f2(z) ≤ 0 reduces to a unit ball constraint and
K � R

n
+, Problem (P0) is termed the extended trust region subproblem (ETRS), which has recently attracted much atten-

tion in the literature (Burer and Anstreicher [7], Burer and Yang [8], Fallahi et al. [11], Ho-Nguyen and Kilinç-
Karzan [15], Hsia and Sheu [16], Jeyakumar and Li [18], Locatelli [24], Sturm and Zhang [35], Yang and Burer [38],
Ye and Zhang [40]). The ETRS is nonconvex, and the semidefinite programming (SDP) relaxation has been a widely
used technique for solving the ETRS. However, the SDP relaxation is often not tight enough and consequently only
offers a lower bound, even for the case with m � 1 (Sturm and Zhang [35]). Jeyakumar and Li [18] first provided the
following dimension condition under which the SDP relaxation is exact,

dim Ker(C−λmin(C)In) ≥ dim span{a1, : : : ,am} + 1,

where λmin(C) stands for the minimal eigenvalue of C and [a1, : : : , am] � A, and showed its immediate application
in robust least squares and a robust SOCPmodel problem. Hsia and Sheu [16] derived a more general sufficient con-
dition,

rank[C−λmin(C)In,a1, : : : , am] ≤ n− 1:

After that, using the Karush–Kuhn–Tucker (KKT) conditions of the SDP relaxation (in fact, an equivalent SOCP
relaxation) of the ETRS, Locatelli [24] presented a more general sufficient condition than Hsia and Sheu [16],
which corresponds to the solution conditions of a specific linear system. Meanwhile, Ho-Nguyen and Kilinç-
Karzan [15] also developed a sufficient condition for the ETRS by identifying the feasibility of a linear system;
moreover, their condition also guarantees a convex reformulation for a variant of the ETRS with general K
beyond R

n
+. In fact, the two conditions in Locatelli [24] and Ho-Nguyen and Kilinç-Karzan [15] are equivalent for

the ETRS when K � R
n
+ as stated in Ho-Nguyen and Kilinç-Karzan [15]. Jeyakumar and Li [19] considered a mini-

max diagonal QCQP, where the objective function is of the form

max
1≤l≤p

1
2
xTClx+ cTl x+ωl

and all the quadratic forms (including the quadratic constraints) are SD, and demonstrated that if the epigraphi-
cal set of all the functions is convex and closed, then the SDP relaxation, which can be further reformulated into
an SOCP problem, is exact.

In this paper, we mainly focus on a generalization of the ETRS (GETRS) of form (P0). This kind of generalization
has applications in signal processing and financial engineering. For example, Huang and Sidiropoulos [17] pro-
posed a consensus alternating direction method of multipliers to solve QCQPs arisen in signal processing, where
the main cost is a subproblem in form of the GTRS. Then we can generalize their method to solve QCQPs with
additional conic linear constraints, where the associated subproblem is now in form of the GETRS. Another
application comes from an optimal portfolio deleveraging problem with cross-impact (Luo et al. [25]), where the
objective is to maximize the equity (a nonconcave quadratic function) subject to a leverage constraint (a noncon-
vex quadratic function) and a polyhedron constraint. Specifically, the quadratic objective function (equity) refers
to the difference between the values of the portfolio and the liability; the quadratic constraint requires that the
leverage ratio of liability over equity does not exceed a predetermined bound; and the polyhedron constraint
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contains all requirements for the trading amounts. To the best of our knowledge, the current literature lacks
study on efficient solution schemes for the GETRS and the equivalence between the GETRS and its SDP/SOCP
relaxation. Our study in this paper is motivated not only by wide applications of the GETRS but also by its
theoretical implication to a more general class of QCQPs. The GETRS is much more difficult than the ETRS: The
feasible region of the GETRS is no longer compact, and the null space of C + uB in the GETRS is more compli-
cated than that in the ETRS, where u is the corresponding KKT multiplier of constraint f2(z) ≤ 0. We consider the
SDP-based conic programming relaxation (for notational simplicity, we will also call it the SDP relaxation) of
Problem (P0):

min
1
2
Z •C+ cTz

s:t:
1
2
Z •B+ bTz+ e ≤ 0, (SDP0)

ATz− d≤K 0,

1 zT

z Z

( )
:0:

To introduce our investigation of sufficient conditions when the SDP relaxation is exact, we first define the set
IPSD � {λ : C+λB:0} ∩ R+, where R+ is the set consisting of all nonnegative real numbers. The set IPSD is in fact
an interval (Jiang and Li [21], Moré [27]). Denote the boundary and the interior of a set S by ∂S and int(S), respec-
tively. Then we have the following possibilities for IPSD,

IPSD � [λ1,λ2], IPSD � [λ1, +∞), IPSD � {λ1}, or IPSD � ∅,
for some 0 ≤ λ1 < λ2 < +∞. In this paper, we will investigate the nontrivial cases, that is, the first three cases. In
these cases, the boundary of the interval IPSD can be written as either ∂IPSD � {λ1,λ2} or ∂IPSD � {λ1}: We then
develop different sufficient conditions in the following two cases, respectively:

1. The interval IPSD ≠ ∅, and IPSD is not a singleton (i.e., int(IPSD)≠ ∅), in which case C and B must be SD (Jiang
and Li [21]).

2. The interval IPSD is a singleton, and C and B are SD.
In case 1, to prove the exactness, we derive two different classes of convex relaxations for the GETRS, which

are equivalent to the SDP relaxation. The first one is based on simultaneous diagonalization of the quadratic
forms; and the second one is based on aggregation of the quadratic forms, where we only need to compute at
most two generalized eigenvalues of the quadratic forms. We propose sufficient conditions to guarantee the
exactness of the convex relaxations and also the exactness of the SDP relaxation. Moreover, we also extend our
conditions for Problem (P0) with its objective function replaced by a finite maximum of quadratic functions asso-
ciated with the same matrix, that is, max1≤l≤p 1

2x
TCx+ cTl x+ωl. We further obtain a generalization of the cele-

brated S-lemma under some mild conditions. Our new S-lemma, where two quadratic forms are both general,
covers the S-lemma for extended trust region system in Jeyakumar and Li [18], where the quadratic constraint is
a strongly convex function, as a special case. In case 2, generalizing the previous conditions, we propose suffi-
cient conditions for the exactness of the SDP relaxation.

We also consider general diagonal QCQPs, where each quadratic function is associated with a diagonal matrix.
Burer and Ye [9] recently proposed a new sufficient condition under which the SDP relaxations of diagonal
QCQPs are exact. Moreover, they proved that their results can be applied to nondiagonal QCQPs and further
show that the SDP relaxations are exact with high probability for a class of randomly generated QCQPs. We com-
pare their sufficient conditions with ours for the GETRS and show the advantages of our conditions. We then
propose a new exactness condition for the SDP relaxation of diagonal QCQPs, based on the exactness conditions
for the SDP relaxation of the GETRS. It then follows from the same arguments in Burer and Ye [9] that our new
sufficient condition can also be applied to nondiagonal QCQPs and the same class of randomly generated
QCQPs.

The remainder of the paper is organized as follows. In Section 2, we derive two different classes of convex
relaxations for (P0) under mild assumptions. Based on these relaxations, we propose sufficient conditions for the
exactness of the convex relaxations and thus the SDP relaxation, and we also derive a variant of the S-lemma. In
Section 3, we compare our sufficient conditions with those in Burer and Ye [9] for the exactness of the SDP
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relaxation of the GETRS and then propose a new sufficient condition for the exactness of SDP relaxations of diag-
onal QCQPs. We conclude our paper in Section 4.

1.1. Notation
For any index set J, we define AJ as the restriction of matrix A to the rows indexed by J and vJ as the restriction of
vector v to the entries indexed by J. We denote by the notation JC the complementary set of J. We use Diag(A)
and diag(a) to denote the vector formed by the diagonal entries of matrix A and the diagonal matrix formed by
vector a, respectively. The notation v(·) represents the optimal value of problem (·). We use Null(A) to denote the
null space of matrix A. We use A \B to denote the relative complement of B in A, that is, the set whose elements
are members of A but not members of B. We denote by ai:j the vector whose components are entries from i to j of
a vector a.

2. Convex Quadratic Relaxations and Exactness Conditions for the GETRS
In this section, we present our main results on exactness conditions for the SDP relaxation of (P0). We first make
some blanket assumptions in Section 2.1. We then consider the case int(IPSD)≠ ∅ in Sections 2.2 and 2.3. Our
main techniques are based on two classes of convex relaxations of (P0) that are equivalent to the SDP relaxation
of (P0). The first class is based on simultaneous diagonalization of the quadratic forms and the second class is
based on aggregation of the quadratic functions, where at most two generalized eigenvalues of the quadratic
forms are required. Our sufficient conditions guarantee the exactness of both convex relaxations and thus the
exactness of the SDP relaxation. We also generalize this result for a variant of problem (P0) with an objective
function in a finite maximum form. Then in Section 2.4, we present a variant of the S-lemma under suitable
assumptions. Finally in Section 2.5, we extend the previous exactness conditions for the case where IPSD is a sin-
gleton, and C and B are SD.

2.1. Blanket Assumptions
We first make the following blanket assumptions throughout Section 2.

Assumption 2.1. Assume the Slater condition holds for Problem (SDP0), that is, there exist Z ∈ R
n×n and z ∈ R

n such
that

1
2
Z •B+ bTz+ e ≤ 0, ATz− d≤K 0, Z 	 zzT, if K is a polyhedron,

1
2
Z •B+ bTz+ e ≤ 0, ATz− d<K0, Z 	 zzT, if K is not a polyhedron:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Assumption 2.2. The two matrices C and B are not both p.s.d. matrices.

Assumption 2.1 is widely used in the SDP literature to ensure strong duality (see, e.g., Burer and Ye [9], Fujie
and Kojima [13], Ye and Zhang [40]). Moreover, under Assumption 2.1, if Assumption 2.2 fails, Problem (P0) is a
convex QCQP and admits exact SDP relaxations (see, e.g., Fujie and Kojima [13]).

2.2. Convex Relaxation Based on Simultaneous Diagonalization
In this section, we consider the case where the two matrices in the quadratic forms are SD in (P0); that is, there
exists a nonsingular matrix U such that UTCU and UTBU both become diagonal matrices. A specific algorithm to
identify two matrices SD or not can be found in Jiang and Li [20]. Then Problem (P0) can be reformulated, via a
change of variables z � Ux, as follows,

min
∑n
i�1

1
2
δix2i +

∑n
i�1

εixi

s:t:
∑n
i�1

1
2
αix2i +

∑n
i�1

βixi + e ≤ 0, (PSD)

Ā
T
x− d≤K 0,

where δ �Diag(UTCU), α �Diag(UTBU), ε �UTc, β �UTb and Ā �UTA. By invoking augmented variables yi �
x2i and relaxing to yi ≥ x2i , we have the following convex relaxation, which can also be cast as an SOCP problem
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with a conic linear constraint,

min
∑n
i�1

1
2
δiyi +

∑n
i�1

εixi

s:t:
∑n
i�1

1
2
αiyi +

∑n
i�1

βixi + e ≤ 0, (SOCPSD)

Ā
T
x− d≤K 0,

x2i ≤ yi, i � 1, : : : ,n:

It is easy to see that (SOCPSD) is equivalent to (SDP0). Thus, we only need to focus on identifying the exactness
of (SOCPSD).

It is well known that under the Slater condition (Assumption 2.1), any optimal solution of convex problems
must satisfy the KKT conditions (Boyd and Vandenberghe [6]). This fact enables us to find sufficient conditions
that guarantee the exactness of the SDP/SOCP relaxation. Let us denote the jth column of matrix Ā by a( j). Then
the KKT conditions of the convex Problem (SOCPSD) are given as follows:

1
2
(δi + uαi) −wi � 0, i � 1, : : : ,n,

εi + uβi +
∑m
j�1

vja
( j)
i + 2wixi � 0, i � 1, : : : ,n,

∑n
i�1

1
2
αiyi +

∑n
i�1

βixi + e ≤ 0,

Ā
T
x− d≤K 0,

x2i ≤ yi, i � 1, : : : ,n,

u
∑n
i�1

1
2
αiyi +

∑n
i�1

βixi + e

( )
� 0,

vT Ā
T
x− d

( )
� 0,

wi(x2i − yi) � 0, i � 1, : : : ,n,

u,wi ≥ 0, i � 1, : : : ,n,

v≥K∗ 0, (1)

where u is the KKT multiplier of the constraint
∑n

i�1 1
2αiyi +∑n

i�1 βixi + e ≤ 0, v is the KKT multiplier of the conic

linear constraint Ā
T
x− d≤K 0, K∗ is the dual cone of K, and wi is the KKT multiplier of the constraint

x2i ≤ yi, i � 1, : : : ,n.
For any u ∈ IPSD, let us define J(u) � {i : δi + uαi � 0, i � 1, : : : ,n}, that is, the index set corresponding to the null

space of diag(δ) + udiag(α). We also define Ĵ � {i : δi � αi � 0, i ∈ J(u)}, that is, the index set corresponding to the
common null space of diag(δ) and diag(α). Wewill use J instead of J(u) for simplicity if it does not cause any confu-
sion. So we have ĀJ � [a(1)J , : : : ,a(m)

J ]. We next show a sufficient condition, which is a generalization of the results in
Locatelli [24] andHo-Nguyen and Kilinç-Karzan [15], to guarantee the exactness of the SDP relaxation of (P0).

Condition 2.1. The interior of IPSD is nonempty, that is, int(IPSD)≠ ∅. For any u ∈ ∂IPSD, if J\Ĵ ≠ ∅, there exists a z ∈ R
| J |

(for notational simplicity we suppose the index set of z is J) such that zi ≠ 0 for some i ∈ J\Ĵ , ĀT
J z≤K 0 and (εJ + uβJ)Tz ≤ 0.

To proceed, we first propose a lemma that helps us understand Condition 2.1.

Lemma 2.1. Suppose that int(IPSD)≠ ∅ and Assumption 2.2 holds. If J\Ĵ ≠ ∅, then we have either αi > 0 ∀i ∈ J\Ĵ or
αi < 0 ∀i ∈ J\Ĵ .
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Proof. If αi � 0 for some i ∈ J\Ĵ , then we must have δi � −uαi � 0, contradicting i ∈ J\Ĵ. Hence, we know that αi ≠ 0
for i ∈ J\Ĵ. First consider the case u≠ 0. For any i, j ∈ J\Ĵ , wemust have δi � −uαi and δj � −uαj. If αi and αj have dif-
ferent signs, then we have IPSD � {u}, contradicting int(IPSD)≠ ∅. Now consider the case u � 0. In this case, we have
C � C+ 0B:0 and thus αi > 0 for all i ∈ J\Ĵ if J\Ĵ ≠ ∅, due to int(IPSD)≠ ∅. This completes the proof. w

Nowwe are ready to present our main result in this subsection.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold and Condition 2.1 holds. Suppose further that there exists an
optimal solution for (SOCPSD). Then v(P0) � v(SOCPSD) � v(SDP0) and the optimal value of (P0) is attained.

Proof. Recall that (P0) is equivalent to (PSD) via a change of variables. Because of the Slater condition, every opti-
mal solution of (SOCPSD) must be a KKT point, denoted by (u∗,v∗,w∗,x∗,y∗), of system (1). As (SOCPSD) is a relax-
ation of (PSD), we always have v(SOCPSD) ≤ v(PSD). We will show that there exists an optimal solution (x̄, ȳ) of
(SOCPSD) satisfying x̄2i � ȳi, i � 1, : : : ,n, which means x̄ is also an feasible solution of (PSD) with an objective
value equal to (SOCPSD). Hence, together with v(SOCPSD) ≤ v(PSD), we conclude that x̄ is also an optimal solu-
tion of (PSD) and v(PSD) � v(SOCPSD).

If u∗ ∈ int(IPSD), then we have w∗
i � 1

2 (δi + u∗αi) > 0, for all i ∉ Ĵ. By the complementary slackness w∗
i ((x∗i )2 − y∗i )

� 0, we have (x∗i )2 � y∗i , for all i ∉ Ĵ. Hence, noting that δi � αi � 0, i ∈ Ĵ , we conclude that x∗ is an optimal solution
of Problem (PSD) and thus v(PSD) � v(SOCPSD).

Next we consider the case u∗ ∈ ∂IPSD. From the complementary slackness w∗
i ((x∗i )2 − y∗i ) � 0, we know that

(x∗i )2 � y∗i , for all i ∉ J. If J\Ĵ � ∅, because of δi � αi � 0, i ∈ Ĵ, we conclude that x∗ is an optimal solution of Problem
(PSD) and thus v(PSD) � v(SOCPSD). Now consider J\Ĵ ≠ ∅. Suppose that (x∗i )2 < y∗i holds for at least one index in
J\Ĵ for otherwise x∗ is an optimal solution of (PSD) and v(PSD) � v(SOCPSD). Let z ∈ R

| J | satisfy Condition 2.1. First
consider the case

∑
i∈J 12αiz2i > 0. Because of Lemma 2.1, we must have αi > 0 for all i ∈ J\Ĵ. Let θ∗ be a nonnegative

solution of the quadratic equation∑
i∈J

1
2
αi(x∗i +θzi)2 + βi(x∗i +θzi) �

∑
i∈J

1
2
αiy∗i + βix

∗
i , (2)

or equivalently ∑
i∈J

1
2
αiz2i θ

2 + ∑
i∈J

αix∗i zi + βizi

( )
θ+∑

i∈J

1
2
αi((x∗i )2 − y∗i ) � 0, (3)

where such θ∗ exists because the quadratic function (3) is nonpositive at θ � 0 and positive if θ is sufficiently
large because of

∑
i∈J 12αiz2i > 0. Hence, setting

(x̄i, ȳi) � (x∗i +θ∗zi, (x∗i +θ∗zi)2), ∀i ∈ J
(x̄i, ȳi) � x∗i ,y∗i

( )
, ∀i ∈ JC

{
gives a new feasible solution of (SOCPSD) with x̄2i − ȳi � 0 for i � 1, : : : ,n. Then we obtain that the objective value
at the new solution does not increase because∑

i∈J

1
2
δix̄2i + εix̄i �

∑
i∈J

1
2
δi(x∗i +θ∗zi)2 + εi(x∗i +θ∗zi)

�∑
i∈J

(εi + u∗βi)(x∗i +θ∗zi) − u∗
1
2
αi(x∗i +θ∗zi)2 + βi(x∗i +θ∗zi)

[ ]

�∑
i∈J

(εi + u∗βi)(x∗i +θ∗zi) − u∗
1
2
αiy∗i + βix

∗
i

[ ]

�∑
i∈J

1
2
δiy∗i + εix∗i +θ∗(εi + u∗βi)zi

≤∑
i∈J

1
2
δiy∗i + εix∗i ,
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where the second and fourth equalities are due to δi + u∗αi � 0, ∀i ∈ J; the third equality is due to (2); and the
inequality is due to Condition 2.1 and θ∗ ≥ 0. Therefore, x̄ is an optimal solution of Problem (PSD) and thus
v(PSD) � v(SOCPSD).

The case
∑

i∈J 12αiz2i < 0 can be proved in a symmetric way.
We claim that the remaining case of

∑
i∈J 12αiz2i � 0 cannot occur. Indeed, if this is the case, we then must have

αizi � 0 ∀i ∈ J\Ĵ . This, together with Lemma 2.1, further implies zi � 0 ∀i ∈ J\Ĵ, contradicting Condition 2.1.
From the above analysis, we obtain that either (x∗,y∗)with (x∗i )2 � y∗i , i ∉ Ĵ or (x̄, ȳ)with x̄2i � ȳi, i ∉ Ĵ is an optimal

solution of (SOCPSD). Hence, we know that the optimal solution of Problem (PSD) is attained by either x∗ or x̄,
which implies that the optimal value of (P0) is attained. w

Remark 2.1. The assumption that there exists an optimal solution for (SOCPSD) holds under mild conditions, for example,
under the assumptions in Theorem 2.1 and in addition Ĵ � ∅. Indeed, the Slater condition (Assumption 2.1) implies that
(SOCPSD) is feasible; hence, the Lagrangian dual of (SOCPSD) is bounded from weak duality. The conditions int(IPSD)≠ ∅ and
Ĵ � ∅ imply that the Lagrangian dual of (SOCPSD) satisfies the Slater condition. Hence, strong duality holds between (SOCPSD)
and its Lagrangian dual, and the optimal solution of (SOCPSD) is attained (see, e.g., Ben-Tal andNemirovski [2]).

If we only care about the exactness of the basic SDP relaxation (SDP0), then we only need the check the follow-
ing condition, which is equivalent to Condition 2.1 but in the original space.

Condition 2.2. The interior of IPSD is nonempty. For any u ∈ ∂IPSD, if Null(C+ uB)\ (Null(C) ∩Null(B)( )≠ ∅, there
exists a y ∈ R

n such that y ∉Null(C) ∩Null(B), (C+ uB)y � 0, ATy≤K 0 and (c+ ub)Ty ≤ 0.

We remark that y ∉Null(C) ∩Null(B) implicitly implies y≠ 0 as we always have 0 ∈Null(C) ∩Null(B), and
that y ∉Null(C) ∩Null(B) in Condition 2.2 is equivalent to zi ≠ 0 for some i ∈ J\Ĵ in Condition 2.1. When
Null(C) ∩Null(B) � {0} and there is no conic constraint in (PSD) (i.e., the problem reduces to the GTRS), the con-
dition int(IPSD)≠ ∅ is also known as the regular case (Moré [27], Stern and Wolkowicz [34]) or dual Slater condi-
tion (Ye and Zhang [40]). We also remark that Condition 2.2 can be checked by computing at most two
generalized eigenvalues (the endpoints of IPSD) and solving a conic linear system with dimension |J | .

2.3. Alternative Convex Relaxations Based on Aggregation of Quadratic Functions
In this subsection, we first propose two convex relaxations for (P0), which are equivalent to the SDP relaxation,
based on aggregation of the objective function and quadratic constraint, and then show the exactness of the two
convex relaxations (and thus the SDP relaxation) under Condition 2.2. Particularly, we consider the following
epigraph-based reformulation of (P0),

min t
s:t: f1(z) ≤ t, (P′

0)
f2(z) ≤ 0,

ATz− d≤K 0:

Recall that in this section we consider the case int(IPSD)≠ ∅. When B is not p.s.d., we have that IPSD � [λ1,λ2],
where both λ1 and λ2 are finite and λ1 < λ2. In this case, by aggregating the quadratic constraints, we consider
the following convex relaxation for (P0),

min t
s:t: h1(z) ≤ t, (P1)

h2(z) ≤ t,

ATz− d≤K 0,

where h1(z) � f1(z) +λ1 f2(z) and h2(z) � f1(z) +λ2f2(z). When B is p.s.d., we have that IPSD � [λ1, +∞) and λ1 is
finite. In this case, we consider the following convex relaxation,

min t
s:t: h3(z) ≤ t, (P2)

f2(z) ≤ 0,

ATz− d≤K 0,

Jiang and Li: Exactness Conditions for SDP Relaxations of the GETRS
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where h3(z) � f1(z) +λ1 f2(z).
We prove in the following theorem that (P1) and (P2) are exact convex relaxations for (P0) under suitable

conditions.

Theorem 2.2. Suppose Assumption 2.2 and Condition 2.2 hold.
1. If B is not p.s.d., and there exists an optimal solution of (P1), then the convex relaxation (P1) is exact.
2.Otherwise if B is p.s.d., and there exists an optimal solution of (P2), then the convex relaxation (P2) is exact.
In both cases, the optimal value of (P0) is attained.

Proof. First consider the case where B is not p.s.d. Because of int(IPSD)≠ ∅, we have 0 ≤ λ1 < λ2 < +∞. As (P1) is a
relaxation of (P′

0) and (P′
0) is equivalent to (P0), we always have v(P1) ≤ v(P0). In the following, we will prove that

for any optimal solution of (P1), we can construct a feasible solution of (P0) with the same objective value, which
is thus optimal to (P0) because v(P1) ≤ v(P0). Define Qi � C+λiB and pi � c+λib for i � 1, 2.

Now suppose (z∗, t∗) is an optimal solution of (P1). First consider the case where h1(z∗) � t∗. This yields
h1(z∗) � t∗ ≥ h2(z∗). Hence, from the definitions of h1 and h2, we have (λ2 −λ1)f2(z∗) ≤ 0, which further implies
f2(z∗) ≤ 0 because of λ1 < λ2. Thus, z∗ is feasible to (P0). Also note that f1(z∗) � t∗ −λ1 f2(z∗): If further either f2(z∗) � 0
or λ1 � 0, we then have f1(z∗) � t∗, which, together with the feasibility of z∗, implies that z∗ is an optimal solution for
(P0). Otherwise wemust have λ1 > 0 and f2(z∗) < 0. In this case, we know from λ2 −λ1 > 0 and f2(z∗) < 0 that

h2(z∗) � h1(z∗) + (λ2 −λ1) f2(z∗) < h1(z∗) � t∗

and from λ1 > 0 that Null(Q1)\ (Null(C) ∩Null(B)( )≠ ∅. Because int(IPSD)≠ ∅, we have

sT(Q1 +Q2)s � 2s C+λ1 +λ2

2
B

( )
s > 0 ∀s ∉Null(C) ∩Null(B): (4)

By Condition 2.2, there exists a nonzero y such that

Q1y � 0, y ∉ Null(C) ∩ Null(B), ATy≤K 0, and (c + λ1b)Ty ≤ 0:

Substituting y into (4) implies yTQ2y > 0. Now let us consider the quadratic equation

h2(z∗ +θy) − t∗ � 1
2
yTQ2yθ2 + (yTQ2z∗ + pT2y)θ+ h2(z∗) − t∗ � 0: (5)

There exists one positive root θ∗ for (5) because of yTQ2y > 0 and h2(z∗) − t < 0. Let z̃ � z∗ + εθ∗y. From the opti-
mality of (z∗, t∗) to (P1), we must have (c+λ1b)Ty � 0 for otherwise we have h2(z̃) < t∗ and

h1(z̃) � h1(z∗) + εθ∗(c+λ1b)Ty < h1(z∗) � t∗

for ε � ρ t∗−h1(z∗)
θ∗(c+λ1b)Ty with ρ ∈ (0, 1), contradicting the optimality of (z∗, t∗). Then letting z̄ � z∗ +θ∗y, we have h2(z̄) � t∗

and h1(z̄) � h1(z∗) +θ∗(c+λ1b)y � t∗. This, together with the definition of h1 and h2, implies that f2(z̄) � 0 and
f1(z̄) � t∗. So z̄ is a feasible solution to (P0) with objective value t∗. This implies that z̄ is an optimal solution of (P0)
and v(P0) � v(P1).

Next we consider the case where h1(z∗) < t∗ and h2(z∗) � t∗. Note that we always have Null(Q2)\(Null(C) ∩
Null(B))≠ ∅: It follows from Condition 2.2 that there exists a nonzero y such that

Q2y � 0, y ∉Null(C) ∩Null(B), ATy≤K 0 and (c+λ2b)Ty ≤ 0:

Similar to the previous case, we have yTQ1y > 0. Consider the quadratic function

h1(z∗ +θy) − t∗ � 1
2
yTQ1yθ2 + (yTQ1z∗ + pT2y)θ+ h1(z∗) − t∗ � 0: (6)

With a similar analysis to the previous case, letting θ∗ be a positive root of Equation (6) and z̄ � z∗ +θ∗y, we have
h2(z̄) � t∗ and h1(z̄) � t∗. This again implies that (z̄, t∗) is an optimal solution of (P0) and v(P0) � v(P1).

The case where B is p.s.d. can be proved with similar techniques. We just give a sketch of the proof. Suppose
(z∗, t∗) is an optimal solution of (P2). Recall that h3(z∗) � f1(z∗) +λ1 f2(z∗) � t∗. Note also that λ1 � 0 implies that
C:0, which contradicts Assumption 2.2. Hence, we must have λ1 > 0. If f2(z∗) � 0, it is easy to see that f1(z∗) � t∗
and thus z∗ is an optimal solution of (P0) with objective value t∗. If f2(z∗) < 0, letting y be a vector satisfying Condi-
tion 2.2, we have yTBy≠ 0 for otherwise (C+λ1B)y � 0, together with the positive semidefiniteness of B, implies
that Cy � 0, contradicting y ∉Null(C) ∩Null(B). Hence, we have yTBy > 0 as B is p.s.d. Consider the quadratic

Jiang and Li: Exactness Conditions for SDP Relaxations of the GETRS
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equation

f2(z∗ +θy) � 1
2
yTByθ2 + bTyθ+ f2(z∗) � 0: (7)

With a similar analysis to the previous case, letting θ∗ be a positive root of Equation (7) and z̄ � z∗ +θ∗y, we have
f2(z̄) � 0 and h1(z̄) � t∗. This implies that z̄ is an optimal solution of (P0) and v(P0) � v(P1).

From the above constructions, we see that the optimal value of (P0) is attained. w

Note that in Theorem 2.2, we do not require the Slater condition (Assumption 2.1). The above proof in fact also
gives a method to recover an optimal solution of (P0) from an optimal solution of (P1) or (P2). The proof also
shows us a geometric interpretation of Condition 2.2; that is, Condition 2.2 indicates the role of ∂IPSD and the
existence of a feasible nonincreasing direction for (P1) and (P2) for the points that are optimal to (P1) or (P2) but
not optimal to (P0).

Remark 2.2. When there are no conic linear constraints in (P0), the convex relaxations (P1) and (P2) reduce to the reformu-
lations for the GTRS in the authors’ previous work (Jiang and Li [21, theorem 2.10]). In the GTRS case, the relaxations are
always exact. However, in the GETRS, the relaxation may not be exact when Condition 2.2 fails. It is obvious that Condition
2.2 automatically holds for the GTRS.

Remark 2.3. We also remark that in Theorem 2.2, as indicated in our proof, the convex relaxations are still exact if K is not
pointed or with a nonempty interior, and ATz− d≤K 0 is replaced by d−ATz ∈K. In this case, our results reduce to theo-
rem 2.4 in Ho-Nguyen and Kilinç-Karzan [15] if the quadratic constraint of (P0) reduces to a unit ball. Moreover, if we
have K � R

n
+ in addition, then our results reduce to the results in Locatelli [24].

To formulate (P1) and (P2), it only requires to compute at most two generalized eigenvalues of a matrix pencil,
that is, the endpoints of IPSD, which costs approximately O(n2) time, whereas to formulate the SOCP relaxation
(SOCPSD), it requires a simultaneous diagonalization transformation, which costs O(n3) time in general. See Jiang
and Li [21, section 2.1] for a detailed discussion on computation of the endpoints of IPSD. Hence, for large-scale
problems, it costs less time to formulate (P1) or (P2) than (SOCPSD). Note that (P1), (P2), and (SOCPSD) can be
solved by interior point methods as they are all convex quadratic problems with additional conic linear con-
straint [30]. Furthermore, using a similar minimax reformulation of the GTRS as in Jiang and Li [21], we may use
fast first order methods to solve an equivalent minimax reformulation of Problem (P1) when the problem dimen-
sion is high and interior point methods are prohibited. Specifically, from the structure of problem (P1), we know
that (P1) is equivalent to the following problem,

min
z

max{h1(z),h2(z)}

s:t: ATz− d≤K 0: (P3)

When the projection onto the set {z : ATz− d≤K 0} is easy to compute, Problem (P3) can be solved efficiently by
many first order methods, for example, the (projected) Nesterov’s accelerated gradient method for minimax opti-
mization problems (Nesterov [29], Wang and Kilinç-Karzan [36]) and the steepest descent method (by adding a
projection in each iteration) in Jiang and Li [21].

Example 2.1. This example shows that there may be a positive gap between the optimal values of the GETRS and its SDP/
SOCP relaxation when Condition 2.1 (or equivalently Condition 2.2) fails,

min 2x21 − x22 − 4x1

s:t: − x21 + x22 ≤ 1,

x2 ≤ 1,

− x2 ≤ −1: (8)

In this problem, we have IPSD � [1, 2] and int(IPSD)≠ ∅. One may check that Condition 2.1 is not fulfilled because for u � 1,
there is no y such that y ∉Null(C) ∩Null(B), (C+B)y � 0, ATy ≤ 0 and (c+ b)Ty ≤ 0, or equivalently, y≠ 0, y1 � 0,
y2 � 0, and −4y1 ≤ 0. Problem (8) is further equivalent to, because of x2 � 1,

min 2x21 − 4x1 − 1, s:t: x21 ≥ 0:

Jiang and Li: Exactness Conditions for SDP Relaxations of the GETRS
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The optimal solution is x1 � 1 and the associated optimal value –3. Hence, the optimal solution of (8) is x � (1,1)T and the
associated optimal value is –3. The SDP relaxation of (8) is

min 2X11 −X22 − 4x1

s:t: −X11 +X22 ≤ 1,

x2 ≤ 1,

− x2 ≤ −1,
1 xT

x X

( )
:0: (9)

We can check that an optimal solution of the SDP relaxation (9) is (X∗,x∗) with X∗ � 4 2
2 5

( )
and x∗ � (2,1)T. Hence, there is

a positive gap between Problem (8) and its SDP relaxation.

Motivated by the results in Jeyakumar and Li [19], we consider a natural extension of Condition 2.2 for the
case where the objective function is a finite maximum of quadratic functions with the same Hessians (and K � R

n

for simplicity). That is, we consider the problem

min f̃1(z) :� max
l�1, : : : ,p

1
2
zTCz+ cTl z+ωl

s:t: f2(z) :� 1
2
zTBz+ bTz+ e ≤ 0, (MP0)

ATz− d ≤ 0:

Now if B is not p.s.d., and IPSD � [λ1,λ2], where both λ1 and λ2 are finite, and λ1 < λ2, we have the following con-
vex relaxation,

min t

s:t: h̃1(z) ≤ t, (MP1)
h̃2(z) ≤ t,

ATz− d ≤ 0,

where h̃1(z) � f̃1(z) +λ1f2(z) and h̃2(z) � f̃1(z) +λ2f2(z). When B is p.s.d., and IPSD � [λ1, +∞) and λ1 is finite, we
have the following convex relaxation,

min t

s:t: h̃3(z) ≤ t, (MP2)
f2(z) ≤ 0,

ATz− d ≤ 0,

where h̃3(z) � f̃1(z) +λ1f2(z). We now extend our exactness condition for Problem (MP0).
Condition 2.3. The interior of IPSD is nonempty. For any u ∈ ∂IPSD, if Null(C+ uB)\ (Null(C) ∩Null(B)( )≠ ∅, there
exists a y ∈ R

n such that y ∉Null(C) ∩Null(B), (C+ uB)y � 0, ATy ≤ 0 and (cl + ub)Ty ≤ 0, l � 1, : : : ,p.

Similar to Theorem 2.2, we can show that the convex quadratic relaxation (MP1) or (MP2) is exact.
Theorem 2.3. Suppose Assumption 2.2 and Condition 2.3 hold.

1. If B is not p.s.d., and there exists an optimal solution of (MP1), then the convex relaxation (MP1) is exact.
2.Otherwise if B is p.s.d., and there exists an optimal solution of (MP2), then the convex relaxation (MP2) is exact.
In both cases, the optimal solution of (MP0) is attained.

Jiang and Li: Exactness Conditions for SDP Relaxations of the GETRS
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Proof. The proof is almost the same with that for Theorem 2.2 except that we need to handle the finite maximum
objective function

f̃1(z) � max
l�1, : : : , p

1
2
zTCz + cTl z + ωl � 1

2
zTCz + max

l�1, : : : , p
cTl z + ωl:

Then all the proof follows almost verbatim from that of Theorem 2.2 except that we need some modifica-
tion when dealing with Equations (5), (6), and (7). We only give an explanation for Equation (5), which now
becomes

h̃2(z∗ + θy) − t∗ � 1
2
(z∗ + θy)TQ2(z∗ + θy) +max

1≤l≤p
{(cl + ub)T(z∗ + θy) + ωl + ub} − t∗ � 0:

Note that h̃2(z∗ +θy) − t∗ < 0 for θ � 0 and h̃2(z∗ +θy) − t∗ →∞ as θ→∞, because of yTQ2y > 0. We conclude that
there is a positive root θ∗ for h̃2(z∗ +θy) − t∗ � 0. w

Now let us compare Condition 2.3 with the condition in Jeyakumar and Li [19] (restricted to Problem (MP0)),
which depends on the epigraphical set,

E(φ1, : : : ,φp,ψ,φ1, : : : ,φm) �
{
(φ,ψ,φ) ∈ R

p × R × R
m : ∃x ∈ R

n such that
1
2
zTCz+ cTl z ≤ φl,

l � 1, : : : ,p,
1
2
zTBz+ bTz+ e ≤ ψ, and ATz− d ≤ φ

}
:

Though the paper Jeyakumar and Li [19] adopts an SOCP formulation using the SD condition for the matrices,
its SOCP relaxation is equivalent to the basic SDP relaxation and thus equivalent to the convex quadratic relaxa-
tion (MP1) or (MP2).
Theorem 2.4 (theorem 2.1 in Jeyakumar and Li [19]). Suppose the epigraphical set is a closed convex set, and v(MP0) > −∞.
Then the basic SDP relaxation is exact.

However, it is in general difficult to verify if the epigraphical set of given quadratic and linear functions is con-
vex or not. In section 4 of Jeyakumar and Li [19], the authors considered Problem (MP0) with B � I and derived
some abstract condition.

Lemma 2.2 (lemma 4.1 in Jeyakumar and Li [19]). Suppose that C is not p.s.d. and B � In in Problem (MP0). Let
D � {y ∈ R

m+1 : f2(z) ≤ y1,ATz− d ≤ y2:m+1, for some z ∈ R
n}:

Suppose that, for each y ∈D, the convex minimization problem

min
z∈Rn

h3(z) : f2(z) ≤ y1,ATz− d ≤ y2:m+1, for some z ∈ R
n{ }

(10)

attains its minimum at some z̄ ∈ R
n with f2(z̄) � y1. Then the basic SDP relaxation is exact.

Note that the condition in Lemma 2.2 is still too abstract to verify. However, we can show that Condition 2.3
can imply that for each y ∈D, the convex minimization Problem (10) attains its minimum at some z̄ ∈ R

n with
f2(z̄) � y1. From our proofs for Theorem 2.3, we can see that Condition 2.3 shows that the convex minimization
Problem (MP2) attains its minimum at some z̄ ∈ R

n with f2(z̄) � 0 when y1 � 0. Because of the homogeneousness
of our condition and using the proof in Theorem 2.3, one can show that the convex minimization Problem (10)
attains its minimum at some z̄ ∈ R

n with f2(z̄) � y1 for each y ∈D. In other words, Condition 2.3 gives a condition
that is easy to verify for Lemma 2.2.

As the condition in Lemma 2.2 is too difficult to verify, Jeyakumar and Li [19] further derived a dimension con-
dition expressed in the original data of the problem to guarantee exact SDP relaxation for (MP0).
Theorem 2.5 (theorem 4.1 in Jeyakumar and Li [19]). Define Q � (C−λmin(C)In,AT) ∈ R

(n+m)×n. Suppose that
min(MP0) > −∞ and dim (KerQ) ≥ p, where KerQ is the kernel of Q, that is, KerQ � {x :Qx � 0}. Then the SDP relaxa-
tion is exact.

We now show that Condition 2.3 contains the condition in Theorem 2.5 as a special case. First note that as there
is a ball constraint, we always have v(MP0) > −∞ and there exists an optimal solution for (MP2) when (MP2) is

Jiang and Li: Exactness Conditions for SDP Relaxations of the GETRS
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feasible. Indeed, if dim (KerQ) ≥ p, then there exists a vector y ∈ KerQ such that (cl + ub)Ty ≤ 0, l � 1, : : : ,p (see the
proof for theorem 4.1 in Jeyakumar and Li [19]). This further implies Condition 2.3.

In the end of this subsection, we give an example to show that Condition 2.3 strictly dominates the condition
in Theorem 2.5. Consider the following GETRS

min
x∈R2

x21 − x22

s:t: x21 + x22 − 1 ≤ 0,

x1 − 1 ≤ 0,

x2 − 1 ≤ 0:

One can verify that Condition 2.3 holds, but the dimension condition in Theorem 2.5 fails as dim (KerQ) � 0 but
p � 1.

2.4. S-Lemma
Using the previous exactness conditions for the GETRS, we further have the following S-lemma with a conic lin-
ear inequality.

Theorem 2.6 (S-Lemma with Linear Inequalities). Suppose Assumptions 2.1, 2.2, and Condition 2.2 hold; and there exists
an optimal solution for (SDP0). Then the following two statements are equivalent:

1. 12x
TBx+ bTx+ e ≤ 0 and ATx− d≤K 0⇒ 1

2x
TCx+ cTx+ γ ≥ 0.

2. ∃u ≥ 0, v≥K∗0 such that 12x
TCx+ cTx+ γ+ u 1

2x
TBx+ bTx+ e

( )
+ vT(ATx− d) ≥ 0, ∀x ∈ R

n:

Proof. It is obvious that statement 2 implies statement 1. Next let us prove the other direction. From Theorem
2.1, we obtain that the SDP relaxation is bounded from below and v(SDP0) � v(P0). Then from Assumptions 2.1,
we know that strong duality holds between (SDP0) and its dual, which is also the Lagrangian dual of Problem
(P0). Hence, we have

max
u≥0,v≥K∗0

min
x

L(x,u,v) :� 1
2
xTCx+ cTx+ u

1
2
xTBx+ bTx+ e

( )
+ vT(ATx− d)

� v(SDP0)
� v(P0)

�min
x

1
2
xTCx+ cTx

∣∣∣∣∣ 12xTBx+ bTx+ e ≤ 0,ATx− d≤K 0

{ }
:

Thus,

min
x

1
2
xTCx + cTx

∣∣∣∣∣ 12 xTBx + bTx + e ≤ 0,ATx − d≤K 0

{ }
≥ −γ

is equivalent to

max
u≥0, v≥K∗0

min
x

L(x,u, v) :� 1
2
xTCx + cTx + u

1
2
xTBx + bTx + e

( )
+ vT(Ax − d) ≥ −γ:

This implies that ∃u ≥ 0,v≥K∗0 such that

1
2
xTCx+ cTx+ γ+ u

1
2
xTBx+ bTx+ e

( )
+ vT(Ax− d) ≥ 0 ∀x ∈ R

n,

which is exactly statement 2. w

Remark 2.4. The classical S-lemma, which was first proposed by Yakubovich [37], and its variants have a lot of applications
in the real world (see the survey paper Pólik and Terlaky [32]). To the best of our knowledge, our S-lemma is the most gen-
eral one with conic linear inequalities, whereas the S-lemma in Jeyakumar and Li [18] is confined to a unit ball constraint
and linear inequalities.
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2.5. Case Where IPSD Is a Singleton
In this subsection, we discuss the case where IPSD is a singleton. Although in practice this case is numerically
unstable, we present a theoretical study here for this case for the sake of completeness.

A natural extension of (P1) is the following relaxation for (P0),

min t

s:t: f1(z) +λ1 f2(z) ≤ t,

ATz− d≤K 0: (11)

In general, Problem (11) is not an exact relaxation of (P0) as the original constraint f2(z) ≤ 0 may not hold at opti-
mal solutions of (11). Moreover, in this case, the dual problem of (SDP0) does not satisfy the Slater condition.
However, the SOCP based relaxation (SOCPSD) (and thus (SDP0)) may still be exact. Let the notation be the same
with Section 2.2. We will modify Condition 2.1 to get a sufficient condition for the exactness of the SDP relaxation
of (11) in the case where IPSD � {ū}. If IPSD is a singleton, then J\Ĵ must be nonempty. We still have αi ≠ 0 for all
i ∈ J\Ĵ. Indeed, if αi � 0 for some i ∈ J\Ĵ, then we must have δi � −ūαi � 0, contradicting i ∈ J\Ĵ .
Condition 2.4. The set IPSD :� {ū} is a singleton and J\Ĵ ≠ ∅. Furthermore, one of the following holds:

1. If αi > 0, ∀i ∈ J\Ĵ, there exists a z ∈ R
| J | such that zi ≠ 0 for some i ∈ J\Ĵ, ĀT

J z≤K 0 , and (εJ + ūβJ)Tz ≤ 0;

2. Else if αi < 0, ∀i ∈ J\Ĵ , there exists a z ∈ R
| J | such that zi ≠ 0 for some i ∈ J\Ĵ, ĀT

J z≤K 0, and (εJ + ūβJ)Tz ≤ 0;

3. Otherwise, there exists two nonzero vectors z( j) ∈ R
| J | such that Ā

T
J z

( j) ≤K 0, (εJ + ūβJ)Tz( j) ≤ 0, j � 1, 2,∑
i∈Jαi(z(1)i )2 > 0, and

∑
i∈Jαi(z(2)i )2 < 0.

We now give some remarks on Condition 2.4. Note that the case where IPSD is a singleton can be seen as a limit
case of the case where IPSD is an interval and the two endpoints are approaching to each other. Note also that
because of Lemma 2.1, Condition 2.1 implies that αi have the same signs for i ∈ J\Ĵ . Hence, cases 1 and 2 in Condi-
tion 2.4 coincide with Condition 2.1. Case 3 of Condition 2.2 can be seen as a generalization of Condition 2.1
because it covers all the two possible cases of Condition 2.1. To see this, suppose IPSD � [λ1,λ2] and J(λ1)\Ĵ ≠ ∅.
Then Condition 2.1 implies αi > 0 for i ∈ J(λ1)\Ĵ because of Lemma 2.1 and thus

∑
i∈J(λ1) αiz2i > 0 because zi ≠ 0 for

some i ∈ J(λ1)\Ĵ . With similar arguments, Condition 2.1 also implies
∑

i∈J(λ2) αiz2i < 0.
In general, Condition 2.4 is not easy to check. However, when αi > 0 ∀i ∈ J\Ĵ , or αi < 0 ∀i ∈ J\Ĵ, Condition 2.4

reduces to the solvability of a (conic) linear system that can be easily checked. This holds trivially when the car-
dinality of the index set J\Ĵ is one.

We show that Condition 2.4 guarantees the exactness of the SDP relaxation of (P0) in the following theorem.

Theorem 2.7 Suppose that Assumptions 2.1 and 2.2 hold, and Condition 2.4 holds. Suppose further that there exists an
optimal solution for (SOCPSD). Then v(P0) � v(SOCPSD) � v(SDP0).
Proof. Because IPSD is a singleton, Bmust not be p.s.d. Otherwise for ū ∈ IPSD, we have ū + ε ∈ IPSD, ∀ε > 0, which
is a contradiction.

Suppose that (x∗,y∗) is an optimal solution of (SOCPSD). Then the fulfillment of the Slater condition (Assump-
tions 2.1) implies that (x∗,y∗) must satisfy the KKT conditions of (SOCPSD). Similar to the proof of Theorem 2.1,
the complementary slackness wi((x∗i )2 − y∗i ) � 0 implies (x∗i )2 � y∗i , i ∈ JC.

Now assume that there exists some i ∈ J\Ĵ , such that (x∗i )2 < y∗i . Let us consider two cases in case 3 of Condi-
tion 2.4:

• If
∑

i∈J αi(y∗i − (x∗i )2) ≥ 0, we consider the following quadratic equation with parameter θ,

∑
i∈J

1
2
αi(x∗i +θzi)2 + βi(x∗i +θzi) −

∑
i∈J

1
2
αiy∗i + βix

∗
i

( )
� 0, (12)

where z satisfies Ā
T
J z ≤ 0, (εJ + ūβJ)Tz � 0 and

∑
i∈J αiz2i > 0, whose existence is due to Condition 2.4. Note that

when θ � 0, the left-hand side (LHS) of (12) becomes 1
2
∑

i∈J αi(x∗i )2 −αiy∗i ≤ 0 as assumed. The LHS of (12)→+∞ as
θ→+∞ due to

∑
i∈J αiz2i > 0. So we can find a nonnegative solution of (12), denoted by θ∗ (θ∗ � 0 if
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∑
i∈J αi(x∗i )2 − αiy∗i � 0). Now by setting x̄JC � x∗JC , x̄J � xJ +θ∗z, and ȳi � (x̄i)2 for all i � 1, : : : ,n, we have

∑
i∈J

1
2
αiȳi + βix̄i �

∑
i∈J

1
2
αiy∗i + βix

∗
i :

Hence, because of Condition 2.4, we know that (x̄, ȳ) is a feasible solution to (SOCPSD). Similar to the proof of
Theorem 2.1, we also conclude that the objective value of the new solution does not increase from

∑
i∈J

1
2
δix̄2i + εix̄i �

∑
i∈J

1
2
δi(x∗i +θ∗zi)2 + εi(x∗i +θ∗zi)

�∑
i∈J

(εi + ūβi)(x∗i +θ∗zi) − ū
1
2
αi(x∗i +θ∗zi)2 + βi(x∗i +θ∗zi)

[ ]

�∑
i∈J

(εi + ūβi)(x∗i +θ∗zi) − ū
1
2
αiy∗i + βix

∗
i

[ ]

�∑
i∈J

1
2
δiy∗i + εix∗i +θ∗(εi + ūβi)zi

≤∑
i∈J

1
2
δiy∗i + εix∗i ,

where the second and fourth equalities are due to δi + ūαi � 0, ∀i ∈ J, the third equality is due to (12), and
the inequality is due to Condition 2.4 and θ∗ ≥ 0. Therefore, x̄ is an optimal solution of Problem (P0) and thus
v(P0) � v(SOCPSD).

• If
∑

i∈J αi(y∗i − (x∗i )2) < 0, because of the existence of z satisfying that Ā
T
J z ≤ 0, (εJ + ūβJ)Tz � 0, and

∑
i∈J αiz2i < 0,

similar arguments yield the exactness of the relaxation (SOCPSD).
Note that when αi ≥ 0 for all i ∈ J, we have J\Ĵ � {i : αi > 0, i ∈ J}. Thus, (x∗i )2 < y∗i for some i ∈ J\Ĵ implies that∑
i∈J αi(y∗i − (x∗i )2) > 0. Because of case 1 of Condition 2.4, it follows from zi ≠ 0 for some i ∈ J\Ĵ that ∑i∈J αiz2i > 0.

Therefore, this case can be proved by the same techniques in the previous proof in the first bullet. Similarly, case
2 of Condition 2.4 can be proved in an analogous way to the second bullet. w

We can also rewrite Condition 2.4 with notation in the original space, which may be more convenient to check.

Condition 2.5. The two matrices C and B are SD. The set IPSD :� {ū} is a singleton and Null(C+ ūB)\ (Null(C) ∩(
Null(B))≠ {0}. Furthermore, one of the following holds:

1. If sTBs > 0 for all s ∈Null(C+ ūB)\ Null(C) ∩Null(B)( ), there exists a z ∈ R
n such that z ∉Null(C) ∩Null(B), (C+

ūB)z � 0, ATz≤K 0 and (c+ ūb)Tz ≤ 0.
2. If sTBs < 0 for all s ∈Null(C+ ūB)\ Null(C) ∩Null(B)( ), there exists a z ∈ R

n such that z ∉Null(C) ∩Null(B), (C+
ūB)z � 0, ATz≤K 0 and (c+ ūb)Tz ≤ 0.

3. Otherwise, there exists two nonzero vectors z( j) ∈ R
n such that ATz( j) ≤K 0, (c+ ūb)Tz( j) ≤ 0, j � 1, 2, and (z(1))TBz(1) >

0 and (z(2))TBz(2) < 0.

3. Diagonal QCQPs
In this section, we first compare Condition 2.1 with the recent results in Burer and Ye [9]. Then based on our
results in Section 2, we propose sufficient conditions to guarantee the exactness of the SDP relaxation for the fol-
lowing diagonal QCQP,

min
1
2
xTQx + qTx

s:t:
1
2
xTPix + pTi x ≤ ri ∀i � 1, : : : ,m, (QCQP)

Jiang and Li: Exactness Conditions for SDP Relaxations of the GETRS
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where Q and Pi are all diagonalmatrices. The SDP relaxation of (QCQP) is
min

1
2
Q •X+ qTx

s:t:
1
2
Pi •X+ pTi x ≤ ri ∀i � 1, : : : ,m, (QSDP)

Y(x,X) :� 1 xT

x X

( )
:0:

Burer and Ye [9] proposed a method to bound the rank of any optimal solution of the SDP relaxation of diagonal
QCQPs. Their results further give a sufficient condition for the solution of the SDP relaxation to be of rank one,
which means the SDP relaxation is exact. We will next restate their condition and then compare their condition
(restricted to the GETRS case) with Condition 2.1. As Q and Pi are all diagonal matrices, (QSDP) is equivalent to
the following SOCP problem,

min
1
2
Q •X+ qTx

1
2
Pi •X+ pTi x ≤ ri ∀i � 1, : : : ,m, (QSOCP)

Xii ≥ x2i , i � 1, : : : ,n,

in the sense that if (X∗,x∗) is an optimal solution of (QSDP), then (X∗,x∗) is an optimal solution of (QSOCP);and if
(X̄, x̄) is an optimal solution of (QSOCP), then (X̃, x̄) is an optimal solution of (QSDP), where X̃ii � X̄ii, i � 1, : : : ,n
and X̃ij � x̄ix̄j, i≠ j.

Now let us first consider the following linear system, which plays an essential role in Burer and Ye [9],

1
2
Q • X + qjxj � −1

1
2
Pi • X + pijxj ≤ 0 ∀i � 1, : : : ,m

Xdiagonal, Xkk ≥ 0 ∀k ≠ j

Xjj free, xj free, (13)

where pij denotes the jth entry of the vector pi. Note that although different from the original system in Burer and
Ye [9], there is a coefficient 1

2 before the terms Q •X and Pi •X in (13), the two systems are essentially the same
with a scaling in X. Denote f :� |{ j : (13) is feasible} | , where f is called the feasibility number for (QCQP) Burer and
Ye [9]. Now we restate below theorem 1 in Burer and Ye [9].

Theorem 3.1 (Burer and Ye [9, theorem 1]). Suppose that the feasible region of (QCQP) is nonempty, there exists λ ≥ 0
such that

∑m
i�1λiPi 	 0, and the interior feasible region of (QSDP) is nonempty. Let Y∗ :� Y(x∗,X∗) be any optimal solution

of (QSDP): It holds that
1 ≤ rank(Y∗) ≤ n− f + 1:

A direct result of Theorem 3.1 is that when f � n, the SDP relaxation of (QCQP) is exact. We give a proof in a dif-
ferent view from Burer and Ye [9], which motivates our new sufficient condition in Theorem 3.2.

Proof. The assumption ensures the existence of an optimal solution for (QSDP) and further for (QSOCP)
(Burer and Ye [9]). Suppose that (X∗,x∗) is an optimal solution of (QSOCP). We claim that the feasibility of (13)
implies that X∗

jj � (x∗j )2. Indeed, letting (X̂, x̂) (completing x̂k � 0 ∀k≠ j) be a feasible solution of (13), if X∗
jj > (x∗j )2,

we obtain a new feasible solution (X∗ +θX̂,x∗ +θx̂) of (QSOCP) with a smaller objective value for all θ satisfying
θ > 0 and X∗

jj +θX̂jj ≥ (x∗j +θx̂j)2. This contradicts the optimality of (X∗,x∗).
Hence, there are at least f-many indices of j such that X∗

jj � (x∗j )2. This implies that X∗ − (x∗)(x∗)T has at least f
zeros in diagonal entries. That is, rank(X∗ − (x∗)(x∗)T) ≤ n− f and thus rank(Y∗) ≤ n− f + 1. w
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Now we give a comparison between the results in Burer and Ye [9] and Condition 2.1 for the GETRS with
K � R

n
+. To meet the assumptions in Burer and Ye [9], suppose further that int(IPSD)≠ ∅, Assumptions 2.1 and 2.2

hold for the GETRS, and there exists an optimal solution for the SDP relaxation of the GETRS. Note that in Burer
and Ye [9], the assumption that there exists λ ≥ 0 with

∑m
i�1λiAi 	 0, together with the other two assumptions in

Theorem 3.1, ensures that

there exists an optimal solution for (QSDP),
and strong duality holds between (QSDP) and its dual:

{
(14)

When applying the results in Burer and Ye [9] for the GETRS, we may remove the assumption that there exists
λ ≥ 0 such that

∑m
i�1λiAi 	 0 because (14) holds under our assumptions. Before comparing the results in Burer

and Ye [9] and Condition 2.1, we should point out that Condition 2.2, which is equivalent to Condition 2.1,
applies directly to general quadratic forms, whereas Theorem 3.1 only applies to diagonal C and B. Although we
can use a change of variables with a congruence matrix as C and B are SD, it costs O(n3) time for such a simulta-
neous diagonalization transformation, which is much more expensive than the generalized eigenvalue computa-
tion in Condition 2.2.

Now suppose that C and B are both diagonal matrices. Let Aj be the jth column of matrix A. Then system (13)
reduces to

1
2
C • X + cjxj � −1

1
2
B • X + bjxj ≤ 0

AT
j xj ≤ 0

Xdiagonal, Xkk ≥ 0 ∀k ≠ j

Xjj free, xj free: (15)

Recall J(u) � {i : δi + uαi � 0, i � 1, : : : ,n}, u ∈ ∂IPSD, and Ĵ � {i : δi � αi � 0, i ∈ J}. Set L(u) � J(u)\Ĵ . For simplicity,
we will use J and L instead of J(u) and L(u), respectively, if it does not cause any confusion. Then Condition 2.1 is
equivalent to the solvability of the following system

(cJ + ubJ)Tx ≤ 0

AT
J x ≤ 0

xi ≠ 0 for some i ∈ L (16)

for all u ∈ ∂IPSD. We observe the following differences between (15) and (16) (i.e., the conditions in Burer and Ye
[9] and our paper) in guaranteeing the exactness of the SDP relaxation of the GETRS:

1. The techniques are different. In fact, the original proof associated with (15) in Burer and Ye [9] uses the comple-
mentary slackness of primal and dual solutions of the SDP relaxation to guarantee the exactness of the SDP relaxa-
tion, though in Theorem 3.1 we also give a proof in a view of feasible directions. On the other hand, the proofs in
Theorems 2.1 and 2.2 associated with (16) use an idea of feasible directions. The conditions in Burer and Ye [9] force
every optimal solution to be of rank one. Our conditions guarantee that there exists an optimal solution with rank
one but do not require all optimal solutions to be of rank one. One reason is that the first inequality in (15) is a strict
inequality 1

2C •X+ cjxj < 0 (we rewrite � −1 to <0 because of the homogeneousness of the system), whereas the first
inequality in (16) may achieve zero. In the view of feasible directions, we also immediately see why Conditions 2.1
and 2.2 do not depend on the constants in the quadratic and linear constraints.

2. We note that the conditions in Theorem 3.1 with f � n need to solve n different linear systems in forms of (15),
where the dimension of each system is n + 1, whereas (16) involves at most two much smaller dimensional linear
systems (with dimension |J | ) with respect to u � λ1 or λ2.

3. We note that (15) is a coordinate-wise condition, whereas (16) can handle several coordinates together as Jmay
contain more than one index. If J contains only one index, then (15) is still incomparable with (16). Particularly, (15)
involves the lifted variable X, whereas (16) does not because Cii + uBii � 0 for each i ∈ J\Ĵ.
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4. The results in Burer and Ye [9], to the best of our knowledge, do not apply to the conic linear constraint
ATz− d≤K 0, whereas ours do. Moreover, our results also give convex relaxations (P1) and (P2) without using a
simultaneous diagonalization transformation.

Example 3.1. To further compare our Condition (16) and Burer and Ye’s results in Theorem 3.1, we consider the following
example:

min x21 + x22

s:t: − x21 + x22 ≤ 1:

It is easy to verify that IPSD � [0, 1] and our Condition (16) holds. So the SDP relaxation is exact. On the other hand, for j � 1,
system (15) becomes

X11 +X22 � −1
−X11 +X22 ≤ 0

Xdiagonal, X22 ≥ 0

X11 free:

Aggregation of the first two constraint becomes 2X22 ≤ −1, which is impossible because X22 ≥ 0. If j � 2, the system is feasi-
ble with (X11,X22,x2) � (0, − 1, 0). So the feasibility number is 1. Then Theorem 3.1 tells us that 1 ≤ rank(Y∗) ≤ 2− 1
+1 � 2, which cannot imply the exactness of the SDP relaxation.

In the following, motivated by the idea of constructing a new solution from a special feasible direction in Con-
dition 2.1, we propose a new condition to guarantee the rank of an optimal solution of (QSDP). Now consider
the following linear system

1
2
QjjXjj + qjxj ≤ 0,

1
2
(Pi)jjXjj + pijxj ≤ 0 ∀i � 1, : : : ,m, either Xjj < 0 or xj ≠ 0: (17)

We then define an alternative feasibility number f ′ � |{ j : either (13) or (17) is feasible} | .
Theorem 3.2. Suppose that the feasible region of (QCQP) is nonempty, there exists λ ≥ 0 such that Q+∑m

i�1λiPi 	 0, and
the interior feasible region of (QSDP) is nonempty. Let Y∗ :� Y(x∗,X∗) be an optimal solution of (QSDP): It holds that

1 ≤ rank(Y∗) ≤ n− f ′ + 1:

When f ′ � n, the SDP relaxation of (QCQP) is exact.
Proof. The proof is similar to that of Theorem 3.1 with the following additional observations. Suppose that (X∗,x∗)
is an optimal solution to (QSOCP) with (x∗j )2 < X∗

jj for index j. Assume (X̂jj, x̂j) is a feasible solution of (17). Com-

plete (X̂, x̂) by setting all entries except (X̂jj, x̂j) to be zero. We claim that there exists a θ ≥ 0 such that (X̄, x̄) �
(X∗ +θX̂,x∗ +θx̂) is an optimal solution of (QSOCP) with X̄jj � x̄2j . Indeed, because (i) either X̂jj < 0 or x̂2j > 0 (due

to x̂j ≠ 0), (ii) (x∗j )2 −X∗
jj < 0, (iii) X̂st � 0 for (s, t)≠ ( j, j), and (iv) x̂k � 0 ∀k≠ j, we obtain that there exists a positive

θ such that (x∗j +θx̂j)2 � X∗
jj +θX̂jj, and (X̄, x̄) � (X∗ +θX̂,x∗ +θx̂) is a feasible solution of (QSOCP) that has an

objective value no larger than that of (X∗,x∗), which is thus optimal. Note that the only difference between (X∗,x∗)
and (X̄, x̄) is the jjth entries in X̄ andX∗ and the jth entries in x̄ and x∗. Hence, we conclude that there exists an opti-
mal solution (X̃, x̃) satisfying X̃jj � x̃2j for any index j such that system (17) is feasible. w

The condition in Theorem 3.1 makes every optimal solution satisfying Xjj � x2j for the rank guarantee, whereas
our condition in Theorem 3.2 is less restrictive as it only requires the existence of one optimal solution such that
Xjj � x2j if system (17) is feasible for index j. We should point out that one disadvantage of (17) is that the system
involves m + 1 linear inequalities and only two variables, which may not be easy to be feasible if m is large.

At the end of this section, let us consider again Example 3.1. We can check our alternative feasibility number
f ′ � 2 for the same example. Indeed, the system (17) with j � 1 reduces to

X11 ≤ 0, −X11 ≤ 0, either X11 < 0 or x1 ≠ 0,

where (X11,x1) � (0, 1) is a feasible solution. Hence, together with the fact that the system (13) is feasible for j � 2 (as
indicated in Example 3.1), we conclude f ′ � 2 and it follows that the rank of the SDP solution is one fromTheorem 3.2.
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4. Conclusions
In this paper, we investigate sufficient conditions to guarantee the exactness of the SDP relaxation for the GETRS.
We propose two different classes of convex relaxations of the GETRS, which are equivalent to the basic SDP
relaxation. We also propose sufficient conditions to guarantee the exactness of the two classes of the convex
relaxations under mild assumptions in different cases. The two convex relaxations also offer alterative efficient
methods to solve the GETRS instead of the SDP relaxation. Based on our sufficient conditions, we also obtain a
more general S-lemma than that in Jeyakumar and Li [18]. Finally, we compare our results with a recent suffi-
cient condition in Burer and Ye [9] and also give a new sufficient condition to bound the rank of solutions of the
SDP relaxation for diagonal QCQPs.

When the quadratic constraint becomes an equality in the GETRS, our previous sufficient conditions still guar-
antee, albeit with a slight modification, the exactness of the SDP relaxation. Because the technique is similar, we
omit the details for this variant. We believe that our work in this paper could highlight a connection between
general QCQPs and the GETRS, one simplest class of QCQPs, and shed some light on the exactness of SDP relax-
ations for general QCQPs. For future research directions, we will investigate more general sufficient conditions
to guarantee the exactness of the SDP relaxation and extend our sufficient conditions in this paper to general
QCQPs. We would also like to find more real-world applications of our newly developed S-lemma.
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