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Abstract. In this paper, we investigate a portfolio optimization methodology using non-
parametric value at risk (VaR). In particular, we adopt kernel VaR and quadratic VaR
as risk measures. As the resulting models are nonconvex and nonsmooth optimization
problems, albeit with some special structures, we propose some specially devised block
coordinate descent (BCD) methods for finding approximate or local optimal solutions.
Computational results show that the BCDmethods are efficient for finding local solutions
with good quality and they compare favorably with the branch-and-bound method-based
global optimal solution procedures. From the simulation test and empirical analysis that
we carry out, we are able to conclude that the mean-VaR models using kernel VaR and
quadratic VaR are more robust compared to those using historical VaR or parametric VaR
under the normal distribution assumption, especially when the information of the return
distribution is limited.
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1. Introduction
Value at risk (VaR) has been a popular and powerful
analytical tool in financial risk management and has
attracted much attention in the literature of portfolio
selection as a viable riskmeasure (see, e.g., J. P. Morgan
1996, Duffie and Pan 1997, Linsmeier and Pearson 2000,
Jorion 2007). By definition, VaR refers to the maximum
potential loss in portfolio value under a specific con-
fidence level, that is, VaR is a quantile of the loss dis-
tribution. Compared with the standard deviation and
the mean absolute deviation, VaR is a downside risk
measure that is more preferable when the underly-
ing return distribution is asymmetric or heavy tailed.
Moreover, the adoption of VaR as a risk measure has
been a regulatory obligation in Basel Accord II.
While VaR is intuitive in risk management practice

and simple in its definition, it has several notorious
limitations and drawbacks such as its insensitivity to
the magnitude of losses beyond VaR, nonqualification
as a coherent risk measure, and its nonconvexity with
respect to the portfolio weights (Artzner et al. 1999,
Mausser and Rosen 1999), which result in computa-
tional difficulties. On the other hand, conditional value

at risk (CVaR) or expected shortfall (ES) measures the
conditional expectation of losses beyond VaR. Being
a coherent risk measure, CVaR is theoretically attrac-
tive and may partly resolve the shortcomings of VaR
(see Rockafellar and Uryasev 2000, 2002). Lim et al.
(2011), however, showed that the portfolios obtained
from data-driven mean-CVaR models are unreliable
because of estimation errors of CVaR. Heyde and Kou
(2004) and Kou et al. (2013) also pointed out that CVaR,
as a risk measure, is not robust with respect to the
underlying models and data; they further argued that
VaR is a more suitable risk measure for trading book
capital requirements. Therefore, VaR is still considered
to be a very useful risk measure in financial portfolio
optimization.

A crucial issue in VaR-based portfolio selectionmod-
els is how to estimate VaR values of portfolio as a
function of portfolio weights. The estimation of VaR is
closely related to the quantile estimation or tail estima-
tion. The estimation methods of VaR in the literature
can be classified into two categories: parametric meth-
odsandnonparametricmethods.Parametric estimation
methods are based on certain distribution assumptions
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of the asset return, which are popular among the prac-
titioners in risk management (J. P. Morgan 1996). For
instance, if the asset return follows a normal distribu-
tion, then the VaR-based portfolio selection model can
be formulated as a second-order cone program, which
is polynomially solvable using interior-point methods.
Alexander and Baptista (2004) studied the influence of
VaR and CVaR constraints to the mean-variance effi-
cient frontiers under the assumption of normal dis-
tribution of asset returns. Bonami and Lejeune (2009)
presented an efficient branch-and-bound method to
solve the portfolio selection problemwith discrete vari-
ables and VaR constraint under a normal distribution
assumption. Cui et al. (2013) investigated nonlinear
portfolio selection using approximate parametric VaR
based on the first- and second-order approximations
of VaR, where the underlying factors of returns are
assumed to follow a normal distribution, and showed
that the portfolio selectionmodels using these paramet-
ric VaR approximations can be reformulated as second-
order cone programs.
Among various nonparametric estimations of VaR,

historical VaR, which is estimated by the empirical
quantile of the portfolio return, has been widely used
as a simple nonparametric estimator of VaR. The port-
folio selection problem based on historical VaR can
be transformed into a mixed-integer binary program-
ming problem by introducing logical variables and
a group of constraints with “big-M” coefficients (see
Benati and Rizzi 2007). Qiu et al. (2014) introduced
a big-M coefficient strengthening scheme to improve
the lower bounds generated from the continuous relax-
ation of the mixed-integer binary programming for-
mulation. To avoid the big-M constraints, which are
more likely to generate weak lower bounds, Luedtke
(2014) proposed a branch-and-cut decomposition algo-
rithm for the chance-constrained programming prob-
lems. Using a smoothing technique to approximate the
historical VaR, Gaivoronski and Pflug (2005) proposed
a solution method to generate a suboptimal portfo-
lio. Wen et al. (2013) proposed an alternative direction
method to solve a portfolio selection problem where
historical VaR and CVaR are combined as the risk mea-
sure. While historical VaR is simple to calculate, it suf-
fers from the lack of tail information of asset returns
and thus is very sensitive to the confidence level and
the portfolio allocation; the tail information is usu-
ally hard to obtain as the extreme samples in the tail
part are rare. As a remedy of these deficiencies, Parzen
(1979) proposed a kernel VaR estimator, which is a non-
parametric quantile estimator by averaging over the
values of empirical quantiles in a neighborhood of
the considered confidence level. More generally, ker-
nel quantile estimators are also discussed in Sheather
and Marron (1990). Butler and Schachter (1998) inves-
tigated nonparametric estimation of VaR by combin-
ing kernel estimationwith historical simulation. Cheng

and Peng (2002) gave a local quadratic estimator by
minimizing the average square error of a quadratic
approximation to the empirical quantile estimator. The
resulting VaR estimator is called quadratic VaR and can
be expressed as a weighted sum of empirical quantiles.
As alternative nonparametric VaR estimators, kernel
VaR and quadratic VaR have been shown to be more
robust than historical VaR (see Butler and Schachter
1998, Cheng and Peng 2002, Chang et al. 2003, Chen
and Tang 2005). Yao et al. (2013) proposed a nonpara-
metric CVaR-based portfolio selection model, which is
shown to be an easily solvable convex program.

In this paper, we focus on portfolio selection models
where nonparametric VaR is adopted as the risk mea-
sure. In particular, we discuss mean-nonparametric
VaR portfolio selection problems using kernel VaR or
quadratic VaR. To the best of our knowledge, this is
the first attempt to integrate these nonparametric VaR
estimators in the portfolio optimization models. Be-
cause of the nonconvex nature of these nonparametric
VaR estimators, these models are nonconvex optimiza-
tion problems and are in general NP-hard. The con-
tribution of this paper is twofold. First, we propose a
block coordinate descent (BCD)method for solving the
mean-nonparametric VaR portfolio selection problems.
By exploiting the special structure of the problems,
the method alternatively solves two tractable subprob-
lems at each iteration and generates a sequence of
approximate solutions. We prove that the proposed
BCDmethod converges to a first-order stationary point
of the problem. Computational results suggest that the
BCD method is capable of finding good-quality solu-
tions and compares favorably with the branch-and-
bound method-based global optimization procedure
that solves a mixed-integer program (MIP) reformula-
tion of the problem. Second, we carry out both sim-
ulation analysis and an empirical study to compare
the performance of portfolios generated by the mean-
nonparametric VaR portfolio models using different
nonparametric VaR estimators. The results show that
the portfolio selection models based on kernel VaR
and quadratic VaR are promising in generating robust
portfolios.

The rest of this paper is organized as follows. In Sec-
tion 2, we first introduce the definitions of nonparamet-
ric VaR estimators including the kernel VaR estimator
and the quadratic VaR estimator. We then establish the
portfolio selection models based on the nonparametric
VaR estimators. In Section 3, we present block coordi-
nate descent methods for finding a local optimal solu-
tion of the nonconvex optimization problems resulting
from the nonparametric VaR-based portfolio selection
models and analyze the convergence of these meth-
ods. We present computational results in Section 4 to
demonstrate the effectiveness of the proposed block
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coordinate descent methods. We then carry out sim-
ulation analysis in Section 5 to check the robustness
of nonparametric VaR-based models. We also conduct
simulation analysis and empirical studies on the per-
formance of the nonparametric VaR-based portfolio
selection models in Section 6. Finally, we give some
concluding remarks in Section 7.
All the data used in Sections 4–6 can be downloaded

from http://www.se.cuhk.edu.hk/~dli under the item
of “Data set for ‘Portfolio optimization with non-
parametric Value-at-Risk: A block coordinate descent
method.’ ” We also provide a document entitled “Data
instruction for ‘Portfolio Selection with Nonparametric
Value-at-Risk: A Block Coordinate Descent Method’ ”
in the online supplement of this paper to indicate
where readers can obtain the actual data values that
were used in our paper, and we explain how the data
used in the computational experiments of our paper
were created.

2. Problem Formulation and
Preliminary Properties

Suppose that there are n assets in themarket, where the
vector of random returns is denoted by r� (r1 , . . . , rn)T .
Let x � (x1 , . . . , xn)T denote a given portfolio with xi
being the weight of asset i. The random return of port-
folio x can be then expressed as rTx. The value at risk
of portfolio x at confidence level α (0.5 < α < 1) is
defined as the smallest number u such that the proba-
bility that loss −rTx exceeds u is not greater than 1− α,
that is,

VaRα(x)� inf{u | � (u < −rTx) ≤ 1− α}. (1)

See J. P. Morgan (1996) for more details of VaR.
In the following, we first introduce two nonparamet-

ric VaR estimators, kernel VaR and quadratic VaR. We
then establish the mean-nonparametric VaR portfolio
selection models using kernel VaR and quadratic VaR
as risk measures, respectively, and we discuss their
properties.

2.1. Nonparametric VaR
In practice, we usually have to calculate VaR with lim-
ited samples of asset returns since we only have some
historical asset returns without knowing the exact dis-
tribution. Even if we know the full information of the
distribution of asset returns, because of some diffi-
culty in computation, we may have to calculate the
VaR of portfolio with limited samples generated by
some kind of sampling methods, such as Monte Carlo
simulation.

Let (r1 , r2 , . . . , rN) denote N available historical data
or independent and identically distributed (i.i.d) sam-
ples of the asset return vector r. The corresponding

Figure 1. (Color online) Illustration of Two-Dimensional
Function V(x)[4] with x2 � 1, Where V(x)� [0.1x1 + 0.3x2 ,
0.4x1 + 0.2x2 ,−0.1x1 + 0.12x2 ,−0.3x1 + 0.15x2 ,−0.4x1 − 0.3x2]
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vector of historical losses or sample losses of portfo-
lio x is

V(x)� [(−r1)Tx,−(r2)Tx, . . . ,−(rN)Tx)].
Let p � dαNe, where dte denotes the smallest integer
greater than or equal to t. Then the historical VaR of
portfolio x is defined as V(x)[p], where we denote by
a[p] the pth smallest element of a ∈ <N . In the sequel,
we also call V(x)[p] a historical or empirical quantile. It is
easy to see that V(x)[p] is a nonconvex function of x (see,
e.g., Gaivoronski and Pflug 2005). Figure 1 describes
a two-dimensional function V(x)[4] when variable x2
is fixed to 1, where V(x) � [0.1x1 + 0.3x2 , 0.4x1 + 0.2x2 ,
−0.1x1 +0.12x2 , −0.3x1 +0.15x2 , −0.4x1−0.3x2]. From
the figure, we can see that V(x)[4] is nonconvex and has
many local minimizers.

The kernel VaR estimator of portfolio x can be defined
as follows (see Parzen 1979):

VaRk
α(x)�

∫ 1

0

1
h

K
(

s − α
h

)
Q(s , x) ds , (2)

where h > 0 is a constant termed as bandwidth, and
Q(s , x) is the historical or empirical quantile func-
tion defined by Q(s , x)� V(x)[i] with i � max{1, dsNe},
and K(t) is a kernel function satisfying ∫∞−∞ K(t) dt � 1,
K(t) ≥ 0 and K(−t) � K(t). For instance, the uniform
kernel is defined by K(t) � 1

2 1{|t |≤1} with 1{ · } denot-
ing the indicator function, and the Gaussian kernel is
defined by K(t)� (1/

√
2π)e−t2/2. The readers can refer to

Li and Racine (2007) for more details on kernel estima-
tion of VaR and the related topics about nonparametric
econometrics.

The kernel VaR estimator can be viewed as a smooth-
ing version of the empirical quantile function. Indeed,
from (2), we can decompose VaRk

α(x) as

VaRk
α(x)�

N∑
i�1

∫ i/N

(i−1)/N

1
h

K
(

s − α
h

)
Q(s , x) ds ,

http://www.se.cuhk.edu.hk/~dli
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�

N∑
i�1

(∫ i/N

(i−1)/N

1
h

K
(

s − α
h

)
ds

)
V(x)[i]

�

N∑
i�1

wiV(x)[i] (3)

with

wi �

∫ i/N

(i−1)/N

1
h

K
(

s − α
h

)
ds ≥ 0, i � 1, . . . ,N. (4)

We see from (4) that the bandwidth constant h controls
the density of wi in the neighborhood of the confidence
level α. When h varies, the weight wi will change, espe-
cially for i close to p � dαNe.
An alternative nonparametric VaR estimator was

proposed by Cheng and Peng (2002) byminimizing the
average square error of a quadratic approximation to
the empirical quantile estimator. The resultant quadratic
VaR estimator is given by

VaRq
α(x)�

2∑
i�0

di

v

∫ 1

0
(α− s)iK

(
s − α

h

)
Q(s , x) ds (5)

with

v �

2∑
j�0

a j d j , d0 � a2a4 − a2
3 , d1 � a2a3 − a1a4 ,

d2 � a1a3 − a2
2 , ai �

∫ 1

0
(α− s)iK

(
s − α

h

)
ds ,

i � 0, 1, 2, 3, 4.

Similar to the decomposition (3) for kernel VaR, we can
decompose the quadratic VaR in (5) as a weighted sum
of the empirical quantiles:

VaRq
α(x)�

N∑
i�1

uiV(x)[i] (6)

with

ui �
bi

v
, bi �

2∑
j�0

a i
j d j ,

a i
j �

∫ i/N

(i−1)/N
(α− s) jK

(
s − α

h

)
ds , j � 0, 1, 2.

2.2. Nonparametric VaR-Based Portfolio
Selection Models

We now turn to discuss portfolio selection models
based on nonparametric VaR. We notice from (3) and
(6) that both kernel VaR and quadratic VaR can be ex-
pressed as a weighted sum of empirical quantiles over
different confidence levels, although the weights can
be different for the two nonparametric VaRs. A general
form of the mean-nonparametric VaR portfolio selec-
tion model can then be expressed as

(P) min
{
%(x) :�

N∑
i�1

ciV(x)[i]
���� µTx ≥ ρ, x ∈X

}
,

where ci ≥ 0 (i � 1, . . . ,N) are the weights defined in (3)
or (6); µ is the mean vector of random returns; ρ is a
prescribed return level; and X is a polyhedral set rep-
resenting the budget constraint, position bounds, and
other side constraints of the portfolio. We see that the
objective function %(x) in (P) includes historical VaR,
kernel VaR, and quadratic VaR as its special cases.

It is evident that problem (P) is only an approxima-
tion (with finite samples of asset returns) to the port-
folio selection model with exact VaR, which is calcu-
lated under full information on the distribution of asset
returns. Then, before getting deep into the method-
ologies for solving (P), the following crucial question
should be asked first. What is the quality of the solu-
tion generated by the approximate problem (P) when
compared with the real optimal one? Will the approx-
imate solutions converge to the real one as the sample
size increases to infinity?

Consider problem (P)with kernel VaR as its objective
function and denote x∗N as the optimal solution to (P)
under a group of samples with size N . Denote x∗ as
the real optimal solution (although it is unknown in
most cases) to the problemwith full information on the
return distribution. Denote the feasible portfolio set as

Ω� {x ∈<n | µTx ≥ ρ, x ∈X}.

Recall that VaRα(x) denotes the true VaR value under
portfolio x. We will give a convergence property of the
approximate optimal VaR, VaRk

α(x∗N), from (P) to the
real optimal VaR, VaRα(x∗), when the sample size goes
large. We first list some assumptions and a lemma,
which are necessary in the proof of the convergence
property.

Suppose that X1 ,X2 , . . . ,XN are i.i.d. random vari-
ables with absolutely continuous cumulative distri-
bution function F and a corresponding probability
density function f . Furthermore, the corresponding
quantile function is defined as Q(λ) � F−1(λ) � inf{u |
� (X ≤ u) ≥ λ}. Let X1,N ≤X2,N ≤ · · · ≤XN,N be the order
statistics of X1 ,X2 , . . . ,XN . Define

TN(λ)�
N∑

i�1
Xi ,N

∫ i/N

(i−1)/N

1
h(N)K

(
s − λ
h(N)

)
ds

as a kernel estimator of the quantile Q(λ) for 0 < λ < 1.
We will use the result in Yang (1985) to show in
Lemma 1 that the kernel estimator converges to the
quantile Q(λ) uniformly (distribution free) as N→∞
and h(N) → 0. For simplicity, we write h � h(N) in
the sequel. We first introduce the following seven
assumptions:

1. The probability density function f ( · ) is continu-
ous and strictly positive on {x | 0 < F(x) < 1}.
2. There exists a natural number j and a constant

M > 0 such that |Q(λ)| ≤M[λ(1− λ)]− j , ∀λ ∈ (0, 1).
3. limx→∞ xε[F(−x)+ 1− F(x)]� 0 for some ε > 0.
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4. Q(λ) is sufficiently smooth and satisfies that
|Q′(λ)| ≤M1 and |Q′′(λ)| ≤M2, ∀λ ∈ (δ, 1− δ) for some
sufficiently small δ > 0, where M1 and M2 > 0 are two
finite constants.
5. The kernel function K( · ) is a probability density

function with finite support set S � [−c , c], where c is
a finite positive real number (i.e., K(x)� 0 for x < −c or
x > c).
6. K( · ) is bounded.
7. ∫∞−∞ xK(x) dx � 0.
All these assumptions, except for item 4, have been

made in the previous related literature (see, e.g., Bickel
1967 and Yang 1985). Assumption 4 states that the
quantile function is not too steep in a large portion of
the interior of its domain, that is, the interval (δ, 1− δ)
for some sufficiently small δ > 0. The above assump-
tions can be satisfied formost distributions under some
mild conditions. For example, let us discuss conditions
to satisfy Assumption 2. Assume f (x) has a bounded
support, that is, there exists a sufficiently large number
M0 > 0 such that f (x) � 0 for all x ≤ −M0 or x ≥ M0
(this assumption holds naturally because a return of an
arbitrary portfolio section in the real world is always
finite). Then by setting M � M0/4 and j � 1, we have
|Q(λ)| ≤M0 ≤M[λ(1− λ)]−1 for all 0 < λ < 1.
Under Assumptions 1–7, we have the following con-

vergence result.

Lemma 1. E[TN(λ)] − Q(λ) � o(1/
√

N) + O(h2) holds
true uniformly (independent of the distribution F) for suffi-
ciently large N and small h.

We have placed the proof of this lemma in the online
supplement. Actually, the above lemma was proved
in Theorem 2 of Yang (1985) under conditions similar
to Assumptions 1–7. We provide in this paper a new
proof of Lemma 1 to emphasize that the convergence
is independent of the distribution F, that is, a uniform
convergence.
Applying Lemma 1, we have the following prop-

osition.

Proposition 1. Assume that (i) for any portfolio x ∈ Ω,
the cumulative distribution function of portfolio return rTx
is absolutely continuous and, furthermore, the distribution
satisfies Assumptions 1–4, and (ii) the Kernel function
K( · ) satisfies Assuptions 5–7 in Lemma 1. Denote x∗N :�
arg minx∈ΩVaR

k
α(x). Then we have

|E[VaRk
α(x∗N)] −VaRα(x∗)| � o(1/

√
N)+O(h2).

We have placed the proof of Proposition 1 in the
online supplement. The previous result indicates that
the quality of the approximate solution depends on
both the sample size and the bandwidth. Further-
more, from Theorem 2 of Yang (1985), it holds that
var(VaRk

α(x∗N)) � o(1/(Nh2)) under some mild condi-
tions. Thus we can see that the quality of the solution

can be guaranteed by enlarging the sample size and
properly controlling the bandwidth at the same time
(e.g., by setting h � O(1/ 4

√
N)).

According to Cheng and Peng (2002), when the
bandwidth h is small enough, the quadratic VaR,
VaRq

α(x), can be reduced to a kernel VaR under a
newly defined kernel function K̄(t) � (h(a4 − a2t2h2)/
(a0a4− a2

2))K(t). Under this circumstance, the quadratic
VaR should share a similar convergence property with
respect to the sample size and the bandwidth as the
kernel VaR.

Now the remaining question is how to solve
model (P). A straightforward way is to reformulate(P)
as a tractable model that can be solved by some stan-
dard software packages. Indeed, by introducing a con-
tinuous variable γi for each empirical quantile V(x)[i]
and a 0-1 variable z i

t for each sample or scenario, we
can rewrite the constraint V(x)[i] ≤ γi as

−(rt)Tx ≤ γi + Mt z
i
t , z i

t ∈ {0, 1}, t � 1, . . . ,N,
N∑

t�1
z i

t ≤ N − i ,

where Mt is a sufficiently large number, for instance,
Mt ≥ maxx∈X [(rt)Tx] −minx∈X [(rt)Tx] for each t. Thus,
model (P) is equivalent to the following mixed-integer
0-1 linear programming problem:

(MIP) min
N∑

i�1
ciγi ,

s.t. µTx ≥ ρ, x ∈X ,
− (rt)Tx ≤ γi + Mt z

i
t , t � 1, . . . ,N, i � 1, . . . ,N,

N∑
t�1

z i
t ≤ N − i , i � 1, . . . ,N,

z i
t ∈ {0, 1}, t � 1, . . . ,N, i � 1, . . . ,N.

We see that problem (MIP) has n + N continuous vari-
ables, N2 binary variables, and N2 + N additional con-
straints. It is clear that problem (MIP) is a large-scale
mixed-integer 0-1 linear programming problem even
for problems with a relatively small sample size. For
instance, N � 100 gives rise to 10000 binary variables
and 10100 additional linear constraints in model (MIP).
This dimensionality challenge makes model (MIP) dif-
ficult to solve for problems with realistic sample size
even by the most advanced mixed-integer program-
ming solvers such as CPLEX. Thus, some other solution
methodologies should be further developed.

Now, let us turn to the discussion of some prelim-
inary properties of the model (P) that are useful in
developing the solutionmethodologies. Notice that the
objective function %(x) in (P) is both nonconvex and
nonsmooth since each empirical quantile V(x)[i] is a
nonconvex and nonsmooth function of x.
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Lemma 2. The function %(x) is a locally Lipschitz function
of x on<n .

Proof. Denote R � (r1 , r2 , . . . , rN)T and y�−Rx. Let

φ(y)�
N∑

i�1
ciy[i].

It suffices to show that φ(y) is a locally Lipschitz func-
tion of y. We first note that y[i] can be expressed as a
DC function (difference of two convex functions):

y[i] �
N∑
j�i

y[ j] −
N∑

j�i+1
y[ j]. (7)

Let ψi(y)�
∑N

j�i y[ j] and ψi+1(y)�
∑N

j�i+1 y[ j]. Then, ψi(y)
(or ψi+1(y)) is the sum of N− i+1 (or N− i) largest com-
ponents of y. Since the sum of k largest components
is a convex function (see, e.g., Example 3.6 in Boyd
and Vandenberghe 2004), ψi(y) and ψi+1(y) are convex
functions on<N . Thus, y[i] is a DC function and hence
is locally Lipschitz function since convex function and
concave functions on<N are locally Lipschitz and the
sum of two locally Lipschitz functions is still locally
Lipschitz. Therefore, φ(y), as a linear combination of
locally Lipschitz functions, is also a locally Lipschitz
function. Finally, since %(x) is exactly φ(y)with y�−Rx,
%(x) is also a locally Lipschitz function. �

By Lemma 2, the Clarke generalized gradient of φ(y),
denoted by ∂φ(y), exists for any y ∈ <N (see Clarke
1983). Moreover, by the chain rule, we have ∂%(x) �
−RT∂φ(y), where y�−Rx. Notice that problem (P) can
be rewritten as

(Pm) min{φ(y) | y�−Rx, x ∈Ω}.

We have the following first-order stationary condition
for (Pm) (see Clarke 1983).
Proposition 2. Let (x∗ ,y∗) be a local optimal solution of
(Pm). Then the following first-order stationary condition
holds:

0 ∈ −RT∂φ(y∗)+NΩ(x∗), (8)

where y∗ � −Rx∗, and NΩ(x∗) is the normal cone of Ω at x∗
defined by NΩ(x∗)� {y ∈<n | ∀x ∈Ω, 〈y, x− x∗〉 ≤ 0}.
An alternative mean-nonparametric VaR portfolio

selection model is to maximize the expected return
under a constraint on the nonparametric VaR. The
resultant problem can be formulated as

(Pc) max
{
µTx

���� %(x) :� N∑
i�1

ciV(x)[i] ≤ ς0 , x ∈X
}
,

where ς0 is a given risk level. Similar to formulation
(MIP), we can reformulate (Pc) as an equivalent mixed-
integer 0-1 linear programming problem with n + N

continuous variables, N2 binary variables, and N2 + N
additional constraints.

The mixed-integer programming reformulations for
(Pm) and (Pc) suggest that these mean-nonparametric
VaR models are nonconvex optimization problems,
which are in general NP-hard. For problems with a
realistic sample size and a medium-to-large number of
assets, it is reasonable to consider local methods that can
efficiently generate some local solutions of these non-
convexmodels. This will be the task in the next section.

3. Block Coordinate Descent Methods
In this section, we propose two block coordinate
descent methods for problems (Pm) and (Pc), respec-
tively. Block coordinate descent methods, also known
as alternative direction methods, have been success-
fully applied to convex programming and some non-
convex optimization problems arising from image pro-
cessing and matrix optimization (see, e.g., Goldstein
2009, Yin et al. 2008, He et al. 2012, Xu et al. 2012, Shen
et al. 2014). The idea of the block coordinate descent
method is to alternatively fix some variables in the aug-
mented Lagrangian formulation of (Pm) or (Pc) and
solve the resulting more tractable subproblems at each
iteration of the algorithm. It can also be viewed as a
solution method that iterates along alternating direc-
tions and eventually achieves global or local optimality.

We first consider applying a block coordinate de-
scent method to (Pm). By introducing coupling con-
straints yi �−(ri)Tx (i � 1, . . . ,N), the problem (Pm) can
then be rewritten as

min
{ N∑

i�1
ciy[i]

���� y�−Rx, µTx ≥ ρ, x ∈X
}
, (9)

where we recall that R � (r1 , r2 , . . . , rN)T and y[i] is the
ith smallest element of y. The augmented Lagrangian
function for (9) is defined as

Lσ(x,y,λ)�
N∑

i�1
ciy[i] +λ

T(y+Rx)+ σ2 ‖y+Rx‖2 , (10)

where σ > 0 is the penalty parameter and λ ∈<m is the
Lagrangian multiplier vector for y � −Rx. For given σ
and λ, the augmented Lagrangian relaxation of (9) is

min{Lσ(x,y,λ) | µTx ≥ ρ, x ∈X}. (11)

A key observation is that if either x or y is fixed in (11),
then (11) can be reduced to a tractable subproblemwith
decision variable y or x. We can therefore apply the
algorithmic framework of a block coordinate descent
method to (9).

Let σk > 0 be given. Suppose at the kth iteration, we
have a tuple (xk ,yk ,λk), where µTxk ≥ ρ and xk ∈ X .
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Consider that we solve the following two subproblems
alternatively:

yk+1
� arg min{Lσk

(xk ,y,λk) | y ∈<N}, (12)
xk+1

� arg min{Lσk
(x,yk+1 ,λk) | x ∈Ω}. (13)

SinceLσk
(x,yk+1 ,λk) is a convex quadratic function of x,

the subproblem (13) is a convex quadratic program
when the set X is polyhedral, which can be solved effi-
ciently.
In the following, we show that the subproblem (12)

can also be solved efficiently. We first note that
Lσk
(xk ,y,λk) can be written as

Lσk
(xk ,y,λk)�

N∑
i�1

ciy[i]+
σk

2 ‖y−ω
k ‖2− 1

2σk
‖λk ‖2 (14)

with ωk � −Rxk −λk/σk . We have the following lemma
for subproblem (12).

Lemma 3. Let ωk ∈<N be ranked in an ascending order:

ωk
i1
≤ ωk

i2
≤ · · · ≤ ωk

iN
, (15)

where {i1 , i2 , . . . , iN} is a permutation of {1, 2, . . . ,N}.
Consider the following convex quadratic program:

min
N∑

j�1
c j yi j

+
σk

2 ‖y−ω
k ‖2 − 1

2σk
‖λk ‖2 (16)

s.t. yi j
≤ yi j+1

, j � 1, . . . ,N − 1.

Then, any optimal solution to problem (16) is also an optimal
solution to problem (12).

Proof. We suppose, without loss of generality, that
ωk

1 ≤ ωk
2 ≤ · · · ≤ ωk

N . It is evident that there exists an
optimal solution to problem (16). Assume that y∗ is an
optimal solution to problem (16). Nowwe show that y∗
is also an optimal solution to problem (12). We prove
this by contradiction. Suppose that y∗ is not an opti-
mal solution to problem (12). Then there must exist an
optimal solution ỹ to problem (12) such that

Lσk
(xk ,y∗ ,λk) −Lσk

(xk , ỹ,λk) > 0. (17)

For the optimal solution ỹ to problem (12), we assume
that there is an s such that 1 ≤ s < t ≤ N and ỹs > ỹt .
Swapping the positions of ỹs and ỹt , we obtain a new
point ȳ � ( ỹ1 , . . . , ỹt , . . . , ỹs , . . . , ỹN)T . Since ỹ and ȳ
have the same set of components, we have ỹ[i] � ȳ[i] for
i � 1, . . . ,N . Thus, by (14) and the fact that ωk

t ≥ ωk
s ,

we have

Lσk
(xk , ỹ,λk)−Lσk

(xk , ȳ,λk)� σk

2 (‖ỹ−ω
k ‖2− ‖ȳ−ωk ‖2)

� σk( ỹs − ỹt)(ωk
t −ωk

s )
≥ 0.

Repeating the swapping procedure if necessary, we can
eventually get a vector ŷ such that

ŷ j ≤ ŷ j+1 , j � 1, . . . ,N − 1; (18)

and

0 ≤Lσk
(xk , ỹ,λk) −Lσk

(xk , ŷ,λk)
<Lσk

(xk ,y∗ ,λk) −Lσk
(xk , ŷ,λk),

where the second strict inequality is from (17). By these
facts, y∗ cannot be an optimal solution to problem (16),
which contradicts the original assumption. Thus y∗
must be an optimal solution to problem (12). �

In the following, we develop a BCD algorithm for
solving (Pm). First, we have the following lemma when
considering problem (12).

Lemma 4. For any pregivenλk and xk and ε > 0, there exists
a bounded number σ̄ such that, for any σk > σ̄, the optimal
solution yk+1 to subproblem (12) satisfies ‖yk+1 +Rxk ‖ ≤ ε.
Proof. Notice that y � −Rxk is a feasible solution to
problem (12) and the corresponding objective value of
problem (12) is ∑N

i�1 ci(−Rxk)[i], which gives an upper
bound to its optimal objective value. Assume that
the claim of the lemma is not true. Then for any
given σ̄, there exists at least one number σk > σ̄ such
that the optimal solution yk+1 to problem (12) satis-
fying ‖yk+1 +Rxk ‖ > ε. Thus, the corresponding opti-
mal objective value is greater than ∑N

i�1 ciyk+1
[i] + (λk)T ·

(yk+1 +Rxk)+ (σkε
2)/2. Notice that we have

N∑
i�1

ciyk+1
[i] + (λk)T(yk+1

+Rxk)+ (σkε
2)/2 ≤

N∑
i�1

ci(−Rxk)[i] ,

which indicates that if σk → +∞, then ∑N
i�1 ciyk+1

[i] +

(λk)T(yk+1 + Rxk) → −∞, which further implies that
‖yk+1‖ → +∞ as σk → +∞. However, from a result for
penalty methods (see Proposition 4.2.1 of Bertsekas
1999), we have that ‖yk+1‖→ ‖−Rxk ‖ <+∞ as σk→+∞.
This contradiction indicates that the claim of Lemma 4
is true. �

The BCD method for solving (Pm) is actually a pro-
cedure to solve subproblems (12) and (13) iteratively.
In the following, we first show the convergent property
of the BCD method without giving a rule for updating
λk , which will be discussed later. For the moment, we
only suppose that {λk} is a constant.

Algorithm 1 (BCD algorithm 1 for (Pm))
Step 0. Choose two accuracy tolerance parameters

ε1 > 0 and ε2 > 0. Choose penalty parameters σ0 ≥ 0 and
c > 1. Choose an initial x0 ∈Ω. Set k :� 0.
Step 1. Set λk

� λ (a constant). Solve problem (16) to
obtain an optimal solution yk+1 and then solve (13) to
obtain an optimal solution xk+1.
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Step 2. If ‖yk+1+Rxk+1‖ ≤ ε1 and ‖xk+1−xk ‖ ≤ ε2, stop.

Step 3. Set σk+1 �

{
σk , if ‖yk+1 +Rxk ‖ ≤ ε1

cσk , else
and k :� k + 1. Go back to Step 1.

For any (x,y) that satisfies ‖y + Rx‖ ≤ ε and x ∈ Ω,
we call it an ε-feasible solution to (Pm). If (x,y) satisfies
‖y + Rx‖ ≤ ε, x ∈ Ω and 0 ∈ RT∂φ(y) + NΩ(x) + η, we
call it an ε-feasible solution to (Pm) satisfying the η-near
first-order stationary condition.
The following theorem establishes the convergence

property of Algorithm 1 to a first-order stationary
point of (Pm).

Theorem 1. Assume that RT R � 0 and the feasible setΩ is
bounded. Let {(xk ,yk)} be the sequence generated by Algo-
rithm 1. If Algorithm 1 terminates within finite steps, then
it generates an ε1-feasible solution to (Pm) satisfying the
η-near first-order stationary condition, where ‖η‖ is in the
order of O(σkε2). Otherwise, there must exist a convergence
subsequence of {(xk ,yk)}, and the accumulation point of
such a subsequence is an ε1-feasible solution to (Pm) satisfy-
ing the first-order stationary condition (8).

Proof. See the online supplement. �

In Algorithm 1, we just select λk as a constant for
all k. It is a combination of a penalty method and the
Lagrangian multiplier method without updating the
multiplier. From the proof of Theorem 1 (see the online
supplement, formulation (3)), we have

λ̄� lim
ki→+∞

[λki + σki
(yki+1

+Rxki+1)],

where λ̄ is an “optimal” Lagrangian multiplier vec-
tor. This suggests the following rule for updating the
Lagrangian multiplier vector for each iteration:

λk+1
�λk

+ σk(yk+1
+Rxk+1).

Actually, this kind of multiplier update is the essential
point of themultiplier method, which has already been
proved to be more efficient and robust than the pure
penalty method or the pure Lagrangian multiplier
method. Based on this observation, we propose the
following BCD method with updating the Lagrangian
multiplier vector.

Algorithm 2 (BCD Algorithm 2 for (Pm))
Step 0. Choose two accuracy tolerance parameters

ε1 > 0 and ε2 > 0. Choose penalty parameters σ0 ≥ 0,
c > 1 and initial Lagrangian multiplier vector λ0 ∈<N .
Choose an initial x0 ∈Ω. Set k :� 0.
Step 1. Set λk

� λ0. Solve problem (16) to obtain an
optimal solution yk+1 and then solve (13) to obtain an
optimal solution xk+1.

Step 2. If ‖yk+1+Rxk+1‖ ≤ ε1 and ‖xk+1−xk ‖ ≤ ε2, stop.

Step 3. Set

λk+1
�λk

+ σk(yk+1
+Rxk+1)

σk+1 �

{
σk , if ‖yk+1 +Rxk ‖ ≤ ε1;
cσk , else

and k :� k + 1. Go back to Step 1.

Obviously, according to Theorem 1, the convergence
property for Algorithm 2 can be established by just
fixingλk after sufficientlymany iterations, which is also
a practical choice for a numerical implementation.

Similar to Algorithm 2, we can apply the idea of the
BCD method to solve problem (Pc). We first notice that
problem (Pc) can be rewritten as

min
{
−µTx

���� y+Rx� 0,
N∑

i�1
ciy[i] ≤ ς0 , x ∈X

}
.

Dualizing the constraint y + Rx � 0, the augmented
Lagrangian function of (Pc) becomes

Lc
σ(x,y,λ)�−µTx+λT(y+Rx)+ σ2 ‖y+Rx‖2 , (19)

where σ > 0 is the penalty parameter and λ is the La-
grangian multiplier vector. Suppose that, at the kth
iteration, we have a tuple (xk ,yk ,λk) such that xk ∈ X
and ∑N

i�1 ciyk
[i] ≤ ς0. The two subproblems at the kth

iteration of the BCD method are as follows:

yk+1
� arg min

{
Lc
σk
(xk ,y,λk)

���� N∑
i�1

ciy[i] ≤ ς0

}
, (20)

xk+1
� arg min{Lc

σk
(x,yk+1 ,λk) | x ∈X}. (21)

We see from (19) that subproblem (21) is a convex
quadratic program. Also, similar to Lemma 3, we can
show that (20) can be reduced to the following convex
quadratic program:

min
σk

2 ‖y−ω
k ‖2 −µTxk − 1

2σk
‖λk ‖2

s.t. yi j
≤ yi j+1

, j � 1, . . . ,N − 1,
N∑

j�1
c j yi j
≤ ς0 ,

where {ωk
i j
} is ranked in an ascending order the same

as in (15).
The iteration process of the BCD method for (Pc) is

the same as Algorithm 2 except that in Step 1, we solve
subproblems (20) and (21), instead of (12) and (13).
A convergence property that is similar to the one in
Theorem 1 can also be established for the BCDmethod
for problem (Pc).
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4. Computational Results
In this section, we present computational results of the
proposed BCD methods for solving the two portfolio
selection models (Pm) and (Pc), respectively. The pur-
pose of our computational experiment is to evaluate
the effectiveness of the methods when applied to the
test problems with realistic sizes using data from a real
market.

4.1. Test Problems
To build the test bed, we use the Thomson Reuter
database to collect 2,039 daily returns of the con-
stituents of Standard and Poor’s 500 index ranging
from November 2004 to November 2012. After exclud-
ing the constituents with missing data, we have 460
stocks as our portfolio candidates. For each pair of
(n ,N), we randomly generate five instances of (Pm) and
(Pc), respectively, where the n stocks are randomly cho-
sen from the 460 stocks and the N samples (r1 , . . . , rN)
are randomly chosen from the 2,039 daily returns of
the corresponding stocks.
Note that the decomposition formulations of the ker-

nel VaR and the quadratic VaR are the same except
for the values of the smoothing weights: VaRk

α(x) �∑N
i�1 wiV(x)[i] with wi defined in (4) and VaRq

α(x) �∑N
i�1 uiV(x)[i] with ui defined in (7). In our test, we only

consider test problems for (Pm) and (Pc) using kernel
VaR. We set ci � wi in (Pm) and (Pc), where wi , i �
1, . . . ,N , are computed by (4) with the Gaussian ker-
nel function K(t) � (1/

√
2π)e−t2/2. Also, the bandwidth

constant is set as h � 1.06N−0.2σ̄ with σ̄ �
√

x̄TΣx̄, where
Σ is the sample covariance matrix and x̄ is the portfolio
with equal weight, that is, x̄ � (1/n , . . . , 1/n)T . In prob-
lem (Pm), we set the prescribed return level at ρ� 0.1%.
In problem (Pc), we set the risk level as ς0 � 0.02. The
set X in (Pm) and (Pc) is set as X � {x ∈<n |∑n

i�1 xi � 1,
0 ≤ xi ≤ 0.5, i � 1, . . . , n}. For all the test problems, we
set the confidence level α � 95%.

4.2. Implementation Details
In our implementation of Algorithm 2 for (Pm) and its
variant for (Pc), the initial point x0 is generated by solv-
ing the CVaR approximation problems of (Pm) and (Pc),
where %(x) is replaced by the sample CVaR of portfo-
lio x. It is well known that these CVaR approximation
problems can be formulated as linear programming
problems (see Rockafellar and Uryasev 2000). In Algo-
rithm 2, we set the accuracy tolerance ε1 � 2× 10−5 and
ε2 � 10−4. Other parameters in Step 0 are set as σ0 � 0.01,
c � 3, and λ0

� 0.
The coefficients Mt in formulation (MIP) for problem
(Pm) are generated by a strengthening procedure simi-
lar to the coefficient strengthening scheme in Qiu et al.
(2014). Notice that the lower bound and upper bound
of γt for all t can be given, respectively, by

¯
γ :� min

t�1,...,N
min
x∈Ω
−(rt)Tx and γ̄ :� max

t�1,...,N
max
x∈Ω
−(rt)Tx.

We first set the value M0
t � maxx∈X [−(rt)Tx] −

¯
γ as the

initial candidate of Mt for each t and then generate a
strengthened coefficient based on M0

t . Denote

F(M0)�
{
x ∈Ω

���� ∃ (z,γ) ∈ [0, 1]N2 × [
¯
γ, γ̄]N ,

s.t. − (rt)Tx ≤ γi + M0
t z i

t , t , i � 1, . . . ,N,
N∑

t�1
z i

t ≤ N − i , i � 1, . . . ,N
}
.

Then a strengthened upper bound of −(rt)Tx − γi can
be obtained by

M′
t :� max{−(rt)Tx: x ∈ F(M0)} −

¯
γ.

In our experiment, problem (MIP) is constructed with
M′

t as the coefficient of binary variable z i
t . The corre-

sponding coefficients in the MIP formulation for prob-
lem (Pc) are generated in a similar procedure.
Algorithm 2 and its variant for problem (Pc) have

been implemented in Matlab and been run on a PC
(3.2 GHz and 16 G RAM). All the linear program,
quadratic program, and mixed-integer programming
problems in our computational experiments are solved
by the LP, QP, and MIP solvers in CPLEX 12.5 with
MATLAB interface, respectively. The parameters of the
CPLEX procedure for MIP formulations of problems
(Pm) and (Pc) are set by default, where the absolute and
relative gaps of the lower bound and upper bound are
10−6 and 10−4, respectively.

4.3. Numerical Results
To evaluate the effectiveness of the BCD method, we
first compare the method with the MIP solver in CPLEX
12.5 when it applies to the mixed-integer 0-1 linear
programming reformulation (MIP) for test problems
with number of sample N ≤ 500. For test problemswith
number of sample N � 1,000, 1,500, 2,000, CPLEX fails
to find any feasible solution for reformulation (MIP)
and terminates because of the memory limitation.

To compare the performance of the BCD method
with formulation (MIP), we set the maximum CPU
time of CPLEX as 3,600 seconds and record the objec-
tive value of the best feasible solution when termi-
nated. If the test problem is not solved within the max-
imum CPU time, we also record the relative final gap
of CPLEX, which is defined by

gap�
(upper bound− lower bound)

upper bound ,

where “upper bound” is the objective value of the cur-
rent best feasible solution. For problem (Pm), we calcu-
late the following improvement ratio of BCD method
over CPLEX:

imp.ratio�
%(x∗C) − %(x∗B)

%(x∗C)
,

rjj
Highlight
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where x∗C denotes the best feasible solution found by
CPLEX for formulation (MIP) and x∗B is the local solu-
tion found by Algorithm 2. For problem (Pc), the
improvement ratio of the BCD method over CPLEX is
defined by

imp.ratio�
µTx∗B −µTx∗C

µTx∗C
.

Tables 1 and 2 summarize the comparison between
the BCD methods and MIP formulations for (Pm) and
(Pc), respectively, where “fval” denotes the objective
value of the feasible solution found, “time” is the CPU
time (seconds) used by the BCD methods or CPLEX
for MIP formulations, “iter” stands for the number of
iterations of the BCD methods, “node” is the num-
ber of nodes explored by the MIP solver of CPLEX
when applied to theMIP reformulations of (Pm) or (Pc).
In our experiment, we choose the sample size N not
smaller than portfolio size n to guarantee that RT R � 0,
which is also a reasonable requirement in portfolio
management. All the results in the tables are averaged
for five test problems.
From Tables 1 and 2, we see that when sample size

N ≤ 300, CPLEX cannot solve most of the test prob-
lems in the maximum CPU time (3,600 seconds) and
terminates with a large final gap, meanwhile BCD
methods can find feasible solutions for all test prob-
lems of (Pm) and (Pc) in 70 seconds, which are sim-
ilar to the incumbent feasible solutions of CPLEX
obtained when reaching the maximum CPU time. For
the test problem with N � 400, 500, BCD methods gen-
erally generate solutions in 80 seconds, which are bet-
ter than the incumbent feasible solutions obtained by
CPLEX in 3,600 seconds, especially when the portfo-
lio size is large. For the test problems with (n ,N) �
(200, 500), (300, 500), (400, 500), the average improve-
ment ratios of BCD methods for problem (Pm) are
16.5%, 21.8%, and 31.7%, respectively, while for prob-
lem (Pc), the average improvement ratios are 15.4%,
22.8%, and 33.6%, respectively. The efficiency of the
BCD methods also can be seen from the number of
iterations in Tables 1 and 2. Since Algorithm 2 and
its variant for (Pc) solve two convex quadratic pro-
gram subproblems at each iteration, the total number
of quadratic programs solved before reaching a local
solution is less than 800 on average for all the test prob-
lems. On the other hand, the MIP solver of CPLEX
solves one linear programming relaxation problem at
each node of the branch-and-bound process for the
MIP formulation. From Tables 1 and 2, we see that the
number of linear programming problems solved dur-
ing the branch-and-bound process ranges from 3,853
to 1,605,825, which is significantly larger than the num-
ber of quadratic programs solved by BCD methods.
Another important observation during our experiment

is that the strengthening process for coefficient Mt is
quite time consuming, especially when sample size N
is large. This could be because N linear problems with
at least N2 variables are solved during the strengthen-
ing procedure.

For test problems with large sample size (N �

1,000, 1,500, 2,000), we report in Table 3 the numerical
results of the BCD methods for (Pm) and (Pc), where
fCVaR denotes the objective value of the initial point x0

obtained from the CVaR approximation. We can see
from Table 3 that for both problems (Pm) and (Pc) the
BCD methods are able to improve the initial points
obtained from the CVaR approximation considerably
within a reasonable amount of computing time. Inter-
estingly, we observe that the number of iterations for
the BCD methods to converge to local solutions does
not exhibit an increasing trend as the number of assets
or the number of samples increases.

5. Analysis on Approximation
Performance

In this section, we conduct simulation analysis on the
approximation performance of the three nonparamet-
ric VaR estimators: kernel VaR, quadratic VaR, and his-
torical VaR. The purpose of the simulation analysis is
to compare the effectiveness and accuracy of the VaR
estimators for the optimal portfolios generated by the
two models (Pm) and (Pc).
To see the approximation effect of different VaR esti-

mators, we consider two market scenarios where the
asset return follows the followingdistributions: (1)mul-
tivariate normal distribution N (µ,Σ); and (2) mixed
distribution

(1− I(ε))N (µ,Σ)+ I(ε)(Ye+ f), (22)

where I(ε) is a Bernoulli random variable with param-
eter ε, e is n-dimensional all-one vector, f is a constant
vector, and Y is nonpositive exponential random vari-
able with density

p(Y � y)�
{
δeδy , if y ≤ 0;
0, else.

Here we set ε � 0.05, δ � 0.01 and constant vector f �
µ−diag(Σ). The mean µ and covariance matrix Σ in the
above normal distribution and the mixed distribution
are estimated by the 2,036 historical daily data of the
460 stocks in Section 4. We point out that the mixed
distribution is often used to represent a market sce-
nario with heavy tail return distribution (see, e.g., Lim
et al. 2011).

We generate four types of portfolios from (Pm) and
(Pc), which were constructed in the sameway as in Sec-
tion 4. More precisely, we generate xk

m and xq
m from (Pm)
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Table 1. Comparison Results of BCD Method and Formulation (MIP) for (Pm)

BCD Formulation (MIP)

n N fval Time Iter fval Time Node Gap(%) imp.ratio(%)

50 100 0.00903 2.5 367 0.00889 404.3 307,040 0.01 −1.6
50 200 0.01008 2.8 361 0.01047 3,600 565,685 73.2 3.7
50 300 0.01322 4.3 364 0.01312 3,600 410,522 78.1 −0.7
50 400 0.01451 5.1 362 0.01444 3,600 128,575 83.4 −0.5
50 500 0.01345 5.9 369 0.01352 3,600 64,898 88.3 0.5
100 100 0.00740 5.2 374 0.00713 416.6 698,430 0.01 −3.7
100 200 0.00867 6.3 393 0.00838 3,600 482,292 68.1 −3.5
100 300 0.00968 7.5 371 0.00962 3,600 178,390 103.4 −0.6
100 400 0.01576 8.1 361 0.01614 3,600 77,724 98.5 2.4
100 500 0.01282 8.7 361 0.01342 3,600 25,479 132.9 4.5
200 200 0.00838 57.1 367 0.00817 3,600 296,515 124.1 −2.6
200 300 0.00948 53.9 387 0.00941 3,600 88,523 130.4 −0.7
200 400 0.01066 57.7 360 0.01102 3,600 21,613 143.9 3.1
200 500 0.00843 58.6 364 0.01012 3,600 6,924 191.3 16.6
300 300 0.00907 53.2 362 0.00897 3,600 37,199 165.3 −1.1
300 400 0.00790 53.2 370 0.00895 3,600 11,533 411.5 11.7
300 500 0.00842 52.2 365 0.01078 3,600 5,834 378.3 21.8
400 400 0.00555 71.8 366 0.00619 3,600 9,960 450.3 10.3
400 500 0.00661 71.6 363 0.00968 3,600 3,853 393.9 31.7

Table 2. Comparison Results of BCD Method and Formulation (MIP) for (Pc)

BCD Formulation (MIP)

n N fval Time Iter fval Time Node Gap(%) imp.ratio(%)

50 100 0.00284 1.76 335 0.00286 4.41 8,874 0.01 −0.6
50 200 0.00307 2.57 353 0.00314 3,600 1,014,622 34.2 −2.2
50 300 0.00294 3.47 365 0.00292 3,600 220,941 81.8 0.6
50 400 0.00114 4.17 363 0.00118 3,600 31,458 76.9 −3.3
50 500 0.00156 3.39 250 0.00143 3,600 15,604 66.2 9.1
100 100 0.00805 4.90 369 0.00811 465.2 1,605,825 0.01 −0.7
100 200 0.00331 4.42 282 0.00347 3,600 812,806 24.1 −4.6
100 300 0.00130 4.65 278 0.00128 3,600 79,945 38.8 1.6
100 400 0.00323 7.21 369 0.00325 3,600 43,006 22.4 −0.6
100 500 0.00151 6.08 276 0.00133 3,600 5,788 46.3 13.5
200 200 0.00275 56.59 317 0.00277 3,600 330,590 31.0 −0.7
200 300 0.00301 64.61 322 0.00302 3,600 38,207 32.7 −0.3
200 400 0.00305 32.79 323 0.00296 3,600 24,598 29.1 3.0
200 500 0.00239 30.29 297 0.00207 3,600 4,286 47.8 15.4
300 300 0.00273 41.35 401 0.00274 3,600 26,174 20.6 −0.3
300 400 0.00229 60.51 304 0.00219 3,600 14,410 33.1 4.5
300 500 0.00285 33.93 338 0.00232 3,600 3,109 72.1 22.8
400 400 0.00204 68.52 344 0.00190 3,600 4,066 48.8 7.3
400 500 0.00199 55.92 282 0.00149 3,600 1,956 82.1 33.6

using the kernel VaR and the quadratic VaR, respec-
tively, and xk

c and xq
c from (Pc) using the kernel VaR and

the quadratic VaR, respectively.
For a VaR estimator VaRapp, we measure its approxi-

mation accuracy over the “true” VaR value of x by the
relative error defined by

Relative error�
|VaRapp(x) −VaR∗(x)|

VaR∗(x) (%),

where VaR∗(x) is estimated by Monte-Carlo simulation
with 50,000 samples drawn from the multivariate dis-
tribution or the mixed distribution.

5.1. Effect of Bandwidths
We first compare the approximation accuracy of the
nonparametric VaR using different bandwidth h. We
set the bandwidth interval within the interval of
[0.002, 0.04]. We choose 20 different values of h from
[0.002, 0.04] and generate 100 groups of samples for
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Table 3. Numerical Results of BCD Methods for (Pm) and (Pc)with Large Sample Size

(Pm) (Pc)

n N fCVaR fval Time Iter fCVaR fval Time Iter

50 1,000 0.03404 0.03294 7.5 298 0.00065 0.00101 7.3 232
100 1,000 0.02377 0.02227 11.4 336 0.00026 0.00095 7.9 213
200 1,000 0.02600 0.02422 35.6 341 0.00079 0.00167 29.4 251
300 1,000 0.01417 0.01334 59.1 336 0.00104 0.00163 30.9 229
400 1,000 0.01597 0.01505 60.9 305 0.00150 0.00222 61.1 238
50 1,500 0.03432 0.03353 12.3 274 0.00102 0.00143 8.38 202
100 1,500 0.03454 0.03401 14.7 281 0.00043 0.00145 14.9 246
200 1,500 0.02654 0.02496 76.5 399 0.00108 0.00170 29.9 234
300 1,500 0.02605 0.02441 45.6 319 0.00085 0.00127 51.7 247
400 1,500 0.02318 0.02169 64.7 314 0.00132 0.00192 56.5 232
50 2,000 0.03916 0.03777 18.6 276 0.00037 0.00084 16.5 229
100 2,000 0.03302 0.03216 22.8 294 0.00041 0.00107 16.0 212
200 2,000 0.03031 0.02853 50.9 281 0.00080 0.00126 32.8 237
300 2,000 0.02408 0.02348 60.7 303 0.00096 0.00146 46.4 249
400 2,000 0.02348 0.02298 74.8 292 0.00097 0.00152 52.8 213

each value, while each group contains 200 samples
from the multivariate distribution and the mixed dis-
tribution, respectively.
Figures 2 and 3 illustrate the average relative errors

of the kernel VaR and quadratic VaR for the four dif-
ferent portfolios when the 100 groups of samples are
drawn from the normal distribution and the mixed
distribution. We see that when the bandwidth h is
between 0.002 and 0.03, the kernel VaR tends to give
smaller relative error than quadratic VaR. However,
when h ≥ 0.03, the relative error of the kernel VaR
increases dramatically. This suggests that while the
kernel VaR can give good approximation if the band-
width is chosen properly, it is more sensitive to the
bandwidth than the quadratic VaR.

5.2. Effect of Sample Sizes
Next, we compare approximation performance of the
two nonparametric VaRs with the historical VaR V(x)[p]
(p � dαNe) and the parametric VaR estimator calcu-
lated by assuming that asset returns follow a normal
distribution N (µ,Σ) (although this may not be true),
which is denoted by VaRn

α(x). It is well known that
VaRn

α(x) has the following closed-form expression in
such a case:

VaRn
α(x)� zα

√
xTΣx−µTx, (23)

where zα � −Ψ−1(1−α) with Ψ being the cumulative
standard normal distribution function. SinceΨ−1(1−α)
<0when α∈(0.5,1),wehave zα>0. Inpractice, thepara-
metric VaR is calculated according to (23) with Σ and µ
estimated by the samples.
Figures 4 and 5 show the relative errors of the VaR

estimators when varying the sample size. From Fig-
ure 4, we see that the parametric VaR, VaRn

α(x), has the

smallest error as the sample size increases, which is
reasonable as the samples were drawn from the normal
distributions. However, we observe from Figure 5 that
VaRn

α(x) is not preferable and often gives bigger rela-
tive errors than the other three VaR estimators because
of the wrong distribution assumption. We also observe
from Figures 4 and 5 that the historical VaR tends to
have similar approximation accuracy as the kernel VaR
and the quadratic VaR, but is unstable when sample
size is small. The kernel VaR and quadratic VaR, on
the other hand, appear to be more robust for sam-
ples from both the normal distribution and the mixed
distribution in terms of the relative errors. From our
simulation, one more point might deserve mention-
ing: no matter which estimator is adopted, the risk
measure seems unstable when there are not enough
data points. In this case, the so-called robust portfolio
selection approach using worst-case analysis can pos-
sibly add value (see Zhu et al. 2015 and the references
therein).

6. Study on Investment Performance
In this section, we conduct in-sample simulation anal-
ysis and an out-of-sample empirical study on the per-
formance of portfolios generated by the two models
(Pm) and (Pc) using nonparametric VaR. The pur-
pose of this section is to evaluate the effects of
using nonparametric VaR in the mean-risk models in
terms of in-sample performance and out-of-sample
performance.

6.1. In-Sample Analysis
In this section, we carry out in-sample analysis of the
portfolios generated by different mean-VaR models via
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Figure 2. (Color online) Average Relative Error of Kernel VaR and Quadratic VaR with Different Bandwidth h for Samples
Drawn from Normal Distribution
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Figure 3. (Color online) Average Relative Error of Kernel VaR and Quadratic VaR with Different Bandwidth h for Samples
Drawn from Mixed Distribution
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Figure 4. (Color online) Relative Error of Different VaR Estimators with Varying Sample Size Under Normal Distribution

1 2 3 4 5 8 10 15 20
0

1

2

3

4

Sample size (×102)

R
el

at
iv

e 
er

ro
r 

(%
)

VaRk
�(xk

m)

VaRq
�(xk

m)

VaRn
�(xk

m)

V(xk
m)[p]

Portfolio xk
m

1 2 3 4 5 8 10 15 20

Sample size (×102)

R
el

at
iv

e 
er

ro
r 

(%
)

0

2

4

6

VaRk
�(xq

m)

VaRq
�(xq

m)

VaRn
�(xq

m)

V(xq
m)[p]

Portfolio xq
m

1 2 3 4 5 8 10 15 20

Sample size (×102)

R
el

at
iv

e 
er

ro
r 

(%
)

0

2

4

6

8

Portfolio xq
c

1 2 3 4 5 8 10 15 20

Sample size (×102)

R
el

at
iv

e 
er

ro
r 

(%
)

0

2

4

6

8

VaRk
�(xk

c)

VaRq
�(xk

c)

VaRn
�(xk

c)

V(xk
c)[p]

Portfolio xk
c

VaRk
�(xq

c)

VaRq
�(xq

c)

VaRn
�(xq

c)

V(xq
c)[p]

Figure 5. (Color online) Relative Error of Different VaR Estimators with Varying Sample Size Under Mixed Distribution
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comparing the mean-VaR efficient frontiers. We con-
sider the following four different portfolio selection
models:
(1) Mean-kernel VaR models (M1): minx∈Ω

∑N
i�1 wi ·

V(x)[i], where wi is calculated by (4).
(2) Mean-quadratic VaR models (M2): minx∈Ω

∑N
i�1 ui ·

V(x)[i], where ui is calculated by (7).
(3) Mean-historical VaR models (M3): minx∈ΩV(x)[p],

where p � dαNe.
(4) Mean-normal VaR model (M4): minx∈ΩVaRn

α(x),
where asset returns are assumed to follow normal dis-
tribution N (µ,Σ).

From (23), we see that model (M4) can be reduced
to a second-order cone programming (SOCP) problem
(see Lobo et al. 1998) by introducing an additional vari-
able γ � VaRn

α(x) and an SOCP constraint: zα
√

xTΣx −
µTx ≤ γ.

We assume that the asset returns follow the mixed
distribution (22), where the mean µ and covariance
matrix Σ are estimated by 473 weekly returns data of
the 460 constituents of Standard and Poor’s 500 index
from January 2004 to January 2013. We then randomly
generate samples of asset returns from the mixed dis-
tribution with sample size N � 100, 200, 300, 400 and
build up the four models (M1)–(M4), respectively. We
setX � {x ∈<n |∑n

i�1 xi � 1, 0≤ xi ≤ 0.5, i � 1, . . . , n}. By
setting different return levels of ρ, we solve these three
nonconvex models, (M1)–(M3), by Algorithm 2 and the

Figure 6. (Color online) Efficient Frontiers of Portfolio Selection Models (M1)–(M4)with Different Sample Size

0.02 0.03 0.04 0.05 0.06 0.07
–2

0

2

4

6
×10–3

VaR

M
ea

n

Sample size N = 100

(M1): Kernel VaR
(M2): Quadratic VaR
(M3): Historical VaR
(M4): Normal VaR

0.02 0.03 0.04 0.05 0.06 0.07
–2

0

2

4

6
×10–3

M
ea

n

VaR

Sample size N = 200

0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6
×10–3

M
ea

n

VaR

Sample size N = 300

0.02 0.03 0.04 0.05 0.06 0.07
–2

0

2

4

6

8
×10–3

M
ea

n

VaR

Sample size N = 400

convex model (M4) by the QCP solver in CPLEX, and
obtain a group of portfolios to generate the mean-VaR
efficient frontiers for all these individualmodels. In cal-
culating the efficient frontiers, the mean values of the
portfolios are calculated by µTx, while the VaR values
of the portfolios are computed by Monte Carlo sim-
ulation using 50,000 samples drawn from the mixed
distribution (22).

The mean-VaR efficient frontiers generated by the
four models are illustrated in Figure 6. From the fig-
ure, we can see that when the sample size is small
(N � 100 or N � 200), the two portfolio selectionmodels
using the kernel and quadratic VaRs appear to generate
portfolios with better mean-VaR pairs than the mod-
els using the historical VaR and the parametric nor-
mal VaR in most cases. However, for relatively larger
sample sizes of N � 300 and N � 400, the difference
between the four efficient frontiers becomes smaller
and there is no obvious dominance relation among
these four efficient frontiers. This suggests that when a
large number of samples is available, these four mod-
els tend to give similar portfolios, but when there are
limited historical data or valid samples, the two non-
parametric VaR-based models outperform the histori-
cal VaR-based model and the parametric normal VaR-
based model. It is worth pointing out that constructing
portfolio selection models using only recent historical
data is reasonable since the market situations could be
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such that only the recent data are relevant. This makes
the mean-kernel VaR model or mean-quadratic VaR
model advantageous when the number of valid data,
especially weekly or monthly historical data, is limited.

6.2. Out-of-Sample Analysis
In this section, we conduct out-of-sample analysis for
the portfolios generated by the four portfolio selection
models (M1)–(M4) using back testing strategy. Again,
we use the 473 weekly returns data of the 460 con-
stituents of Standard & Poor’s 500 Index from Febru-
ary 2003 to February 2012. We choose the 52 weeks
from February 2011 to February 2012 as the out-of-
sample period. We set the initial portfolio value equal
to 1 at the beginning of the period. At the end of each
week, we calculate the values of the four portfolios and
update the four portfolios by resolving (M1)–(M4)with
updated parameters computed with the new data set.
More precisely, at the end of each week, we calculate
the parameters of these four models and resolve the
four models in the same way as in the in-sample analy-
sis using the most recent 200 weekly return data before
that week.
Figures 7–9 illustrate the evolution of the portfolio

values of the portfolios generated by the four models
under different prescribed return levels during the out-
of-sample period using the weekly rebalancing strat-
egy. We observe from these figures that when the
required return level is ρ � 0.1% or 0.4%, both (M1)
and (M2) are able to generate portfolios with higher
portfolio values during the out-of-sample period than
(M3) and (M4), while (M1), which uses the kernel VaR
risk measure, appears to have the best performance
among the fourmodels. For the case ρ� 0.7%, (M1) still
constructs portfolios with the best portfolio value and
return, while model (M4) with VaR under the normal
distribution gives slightly lower portfolio value. We
report in Table 4 statistical results of the four portfolios
during the out-of-sample period, including the final

Figure 7. (Color online) Evolution of Portfolio Values for
Different Portfolio Selection Models During Out-of-Sample
Period: ρ � 0.1%
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Figure 8. (Color online) Evolution of Portfolio Values for
Different Portfolio Selection Models During Out-of-Sample
Period: ρ � 0.4%
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Figure 9. (Color online) Evolution of Portfolio Values for
Different Portfolio Selection Models During Out-of-Sample
Period: ρ � 0.7%
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portfolio value (FinVal), average return (Rave), maxi-
mum return (Rmax), minimum return (Rmin), standard
deviation (Std), and the ratio of average return over
standard deviation Rave/Std. Notice that these statistics
are calculated with the weekly realized returns of the
strategies during the out-of-sample period. We mark
the best-performing portfolios under different criteria
in bold fonts. The statistical results show that the port-
folio selection model (M1) using the kernel VaR has the
best performance in terms of the final value, average
return, and the ratio of average return over the stan-
dard deviation under all required return levels. Mean-
while, model (M4) usually generates portfolios with
the smallest volatilities among the four models. Model
(M3), which uses the historical VaR, gives the smallest
ratio of average return over standard deviation. This
could be mainly because historical VaR is more sen-
sible to the tail information than nonparametric VaRs
when the sample size is small.

7. Conclusion
In this paper, we have investigated the adoption of
nonparametric VaR in mean-VaR portfolio selection



Cui et al.: Portfolio Optimization with Nonparametric Value at Risk
470 INFORMS Journal on Computing, 2018, vol. 30, no. 3, pp. 454–471, ©2018 INFORMS

Table 4. Statistical Results of Portfolio Values and Returns During Out-of-Sample Period

ρ (%) Model FinVal Rave(%) Rmax(%) Rmin(%) Std(%) Rave/Std

0.1 (M1): kernel VaR 1.22 0.42 8.32 −8.17 2.37 0.1772
(M2): quadratic VaR 1.18 0.34 8.15 −8.05 2.36 0.1441
(M3): historical VaR 1.15 0.29 7.62 −8.36 2.23 0.1300
(M4): normal VaR 1.14 0.27 5.87 −7.52 1.89 0.1429

0.4 (M1): kernel VaR 1.26 0.48 7.53 −8.23 2.41 0.1981
(M2): quadratic VaR 1.22 0.41 8.41 −8.59 2.54 0.1616
(M3): historical VaR 1.18 0.36 8.32 −8.15 2.29 0.1571
(M4): normal VaR 1.21 0.39 6.84 −8.46 2.15 0.1816

0.7 (M1): kernel VaR 1.31 0.57 9.94 −10.60 3.11 0.1823
(M2): quadratic VaR 1.22 0.45 9.55 −11.74 3.19 0.1400
(M3): historical VaR 1.18 0.36 9.18 −12.21 3.03 0.1180
(M4): normal VaR 1.27 0.50 8.96 −9.82 2.78 0.1804

models. Our main motivation is to develop an effi-
cient solution methodology for the portfolio selection
models using nonparametric VaR, as a nonparamet-
ric method is robust in VaR calculation. By exploiting
the special structure of the nonconvex optimization
problems resulting from the mean-kernel VaR and the
mean-quadratic VaR models, we have developed some
efficient block coordinate descent methods. Numeri-
cal results reveal that the proposed BCD methods are
capable of finding good local solutions for large-scale
problems and compare favorably with the branch-and-
bound method-based global optimization procedure.
We have also conducted simulation and empirical anal-
ysis to evaluate the in-sample and out-of-sample per-
formance of nonparametric VaRs. Our empirical results
suggest that the kernel VaR and quadratic VaR are
promising to serve as robust risk measures in the
mean-risk portfolio selection modeling.
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