Online Supplement for "Portfolio Optimization with Nonparametric Value-at-Risk: A Block Coordinate Descent Method"

Xueting Cuia ${ }^{a}$, Xiaoling Sun ${ }^{b}$, Shushang Zhu ${ }^{c}$, Rujun Jiang ${ }^{\text {d }}$ and Duan Li ${ }^{e}$
${ }^{\text {a }}$ School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, P. R. China, cui.xueting@shufe.edu.cn
${ }^{\mathrm{b}}$ Department of Management Science, School of Management, Fudan University, Shanghai 200433, P. R. China
${ }^{c}$ Department of Finance and Investment, Sun Yat-Sen Business School, Sun Yat-Sen University, Guangzhou 510275, P. R. China, zhuss@mail.sysu.edu.cn
${ }^{\text {d}}$ School of Data Science, Fudan University, Shanghai 200433, P. R. China, rjjiang@fudan.edu.cn
${ }^{e}$ Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, dli@se.cuhk.edu.hk

1 Proof of Lemma 1

Proof. For given s, let $r=[s N]$. Following Yang (1985), we have $E\left[T_{N}(\lambda)\right]-Q(\lambda)=I_{1}+I_{2}$, where

$$
I_{1}=\int_{0}^{1} E\left[X_{r, N}-Q\left(\frac{r}{N+1}\right)\right] \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s
$$

and

$$
I_{2}=\int_{0}^{1}\left[Q\left(\frac{r}{N+1}\right)-Q(\lambda)\right] \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s
$$

Next, we prove $I_{1}=o(1 / \sqrt{N})$ and $I_{2}=O(1 / N)+O\left(h^{2}\right)$ uniformly for sufficiently large N and small h.

Recall that, under Assumptions 1, 2 and 3, Theorem 2.2(b) in Bickel (1967) showed that, for any $0<a<0.5, E\left[X_{r, N}-Q\left(\frac{r}{N+1}\right)\right]=o(1 / \sqrt{N})$ holds uniformly for sufficiently large N and r satisfying $a N \leq r \leq(1-a) N$, and this result is independent of the distribution F.

Choose a satisfying $0<a<\min \{\lambda, 1-\lambda\} \leq 0.5$ and $a>2 \delta$ at the same time, where δ are defined in Assumption 4. Then we have $a-\lambda<0$ and $1-a-\lambda>0$. Set h such that $\frac{a-\lambda}{h}<-c$ and $\frac{1-a-\lambda}{h}>c$, which can be done as $h \rightarrow 0$. More specifically, setting h small enough such that the support set $S=[-c, c] \subset\left[\frac{a-\lambda}{h}, \frac{1-a-\lambda}{h}\right]$ guarantees $K\left(\frac{s-\lambda}{h}\right)=0$ (and thus
$\left.E\left[X_{r, N}-Q\left(\frac{r}{N+1}\right)\right] \frac{1}{h} K\left(\frac{s-\lambda}{h}\right)=0\right)$ for $s \leq a$ or $s \geq 1-a-\epsilon(\epsilon$ is a sufficiently small number). Then we have

$$
\begin{aligned}
I_{1} & =\int_{0}^{1} E\left[X_{r, N}-Q\left(\frac{r}{N+1}\right)\right] \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s \\
& =\int_{a}^{(1-a-\epsilon)} E\left[X_{r, N}-Q\left(\frac{r}{N+1}\right)\right] K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right) \\
& =o(1 / \sqrt{N})
\end{aligned}
$$

uniformly, since $K(\cdot)$ is bounded and $E\left[X_{r, N}-Q\left(\frac{r}{N+1}\right)\right]=o(1 / \sqrt{N})$ holds uniformly for sufficiently large N and r satisfying $a N \leq r=[N s] \leq(1-a-\epsilon) N+1 \leq(1-a) N$, and, again, this result is independent of the distribution F.

Now we turn to demonstrate that $I_{2}=O(1 / N)+O\left(h^{2}\right)$ holds uniformly for sufficiently large N and small h. Notice that $I_{2}=\theta_{1}+\theta_{2}$, where

$$
\theta_{1}=\int_{0}^{1}\left[Q\left(\frac{r}{N+1}\right)-Q(s)\right] \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s \text { and } \theta_{2}=\int_{0}^{1}[Q(s)-Q(\lambda)] \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s
$$

By the mean value theorem, we have

$$
Q\left(\frac{r}{N+1}\right)-Q(s)=Q^{\prime}\left(r_{s}\right)\left(\frac{r}{N+1}-s\right)
$$

where $r_{s} \in[r /(N+1), s]$ (if $\left.r /(N+1)<s\right)$ or $r_{s} \in[s, r /(N+1)]($ if $r /(N+1) \geq s)$. Notice that $N s-1<r=[N s]<N s+1$ (implying $(-1-s) /(N+1)<r /(N+1)-s<(1-s) /(N+1))$ and further that $\left|Q^{\prime}\left(r_{s}\right)\right|<M_{1}$ because $r_{s} \in(\delta, 1-\delta)$ for $N \geq 1$. We then have

$$
\begin{aligned}
\left|\theta_{1}\right| & =\left|\int_{0}^{1} Q^{\prime}\left(r_{s}\right)\left(\frac{r}{N+1}-s\right) K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right)\right| \\
& =\left|\int_{a}^{1-a} Q^{\prime}\left(r_{s}\right)\left(\frac{r}{N+1}-s\right) K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right)\right| \\
& \leq \int_{a}^{1-a}\left|Q^{\prime}\left(r_{s}\right)\left(\frac{r}{N+1}-s\right)\right| K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right) \\
& \leq \frac{M_{1}}{N+1} \int_{0}^{1}(1+s) K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right) \\
& =O(1 / N),
\end{aligned}
$$

where the last equality is due to that $K(\cdot)$ is bounded. Thus, we have $\theta_{1}=O(1 / N)$.
For θ_{2}, using Taylor's expansion, we have

$$
Q(s)-Q(\lambda)=Q^{\prime}(\lambda)(s-\lambda)+\frac{1}{2} Q^{\prime \prime}\left(s_{\lambda}\right)(s-\lambda)^{2},
$$

where s_{λ} is an interior point of the interval $[s, \lambda]$ (if $\lambda>s$) or $[\lambda, s]$ (if $s \geq \lambda$). Thus

$$
\theta_{2}=\int_{0}^{1} Q^{\prime}(\lambda)(s-\lambda) \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s+\frac{1}{2} \int_{0}^{1} Q^{\prime \prime}\left(s_{\lambda}\right)(s-\lambda)^{2} \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s
$$

Due to $(s-\lambda)<[\min \{\lambda,(1-\lambda)\}]^{-1}(s-\lambda)^{2}$ for all $s \notin[0,1]$, following the proof of Theorem 1 in Yang (1985), for the first integral of θ_{2}, we have

$$
\begin{aligned}
& \left|\int_{0}^{1} Q^{\prime}(\lambda)(s-\lambda) \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s\right| \\
& =\left|\int_{s \notin[0,1]} Q^{\prime}(\lambda)(s-\lambda) \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s\right| \\
& \leq h^{2}\left|Q^{\prime}(\lambda)\right|[\min \{\lambda,(1-\lambda)\}]^{-1} \int_{s \notin[0,1]}\left(\frac{s-\lambda}{h}\right)^{2} K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right) \\
& =h^{2}\left|Q^{\prime}(\lambda)\right|[\min \{\lambda,(1-\lambda)\}]^{-1} \int_{u \notin\left[-\frac{\lambda}{h}, \frac{1-\lambda}{h}\right]} u^{2} K(u) d u,
\end{aligned}
$$

where the first equality is due to Assumption 7. Since $Q^{\prime}(\lambda)$ is assumed to be bounded for all distributions and the boundedness and finite support of $K(\cdot)$ imply $\int_{u \notin\left[-\frac{\lambda}{h}, \frac{1-\lambda}{h}\right]} u^{2} K(u) d u<M_{3}$ for some constant $M_{3}>0$, we have

$$
\int_{0}^{1} \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) Q^{\prime}(\lambda)(s-\lambda) d s=O\left(h^{2}\right)
$$

uniformly. We also have the following result for the second integral of θ_{2},

$$
\begin{aligned}
& \left|\frac{1}{2} \int_{0}^{1} Q^{\prime \prime}\left(s_{\lambda}\right)(s-\lambda)^{2} \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s\right| \\
& =\left|\frac{1}{2} \int_{a}^{1-a} Q^{\prime \prime}\left(s_{\lambda}\right)(s-\lambda)^{2} \frac{1}{h} K\left(\frac{s-\lambda}{h}\right) d s\right| \\
& \leq \frac{h^{2}}{2} \int_{a}^{1-a}\left|Q^{\prime \prime}\left(s_{\lambda}\right)\right|\left(\frac{s-\lambda}{h}\right)^{2} K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right) \\
& \leq \frac{h^{2}}{2} M_{2} \int_{0}^{1}\left(\frac{s-\lambda}{h}\right)^{2} K\left(\frac{s-\lambda}{h}\right) d\left(\frac{s-\lambda}{h}\right) \\
& \leq \frac{h^{2}}{2} M_{2} \int_{-\infty}^{\infty} u^{2} K(u) d u \\
& =O\left(h^{2}\right)
\end{aligned}
$$

where the boundedness and finite support of $K(\cdot)$ implies $\int_{-\infty}^{\infty} u^{2} K(u) d u<M_{4}$ for some constant $M_{4}>0$. Thus $I_{2}=\theta_{1}+\theta_{2}=O(1 / N)+O\left(h^{2}\right)$ holds independently of the distribution F. Since $O(1 / N)=o(1 / \sqrt{N})$, we have $E\left[T_{N}(\lambda)\right]-Q(\lambda)=I_{1}+I_{2}=o(1 / \sqrt{N})+O\left(h^{2}\right)$.

2 Proof of Proposition 1

Proof. By definition, VaR is exactly the α-quantile $\left(\operatorname{VaR}_{\alpha}=Q(\alpha)\right)$. According to Lemma 1, we have $\left|E\left[\operatorname{VaR}_{\alpha}^{k}(\boldsymbol{x})\right]-\operatorname{VaR}_{\alpha}(\boldsymbol{x})\right|=o(1 / \sqrt{N})+O\left(h^{2}\right)$ uniformly for $\boldsymbol{x} \in \Omega$. Then

$$
\begin{aligned}
E\left[\operatorname{VaR}_{\alpha}^{k}\left(\boldsymbol{x}_{N}^{*}\right)\right]-\operatorname{VaR}_{\alpha}\left(\boldsymbol{x}^{*}\right) & =E\left[\min _{\boldsymbol{x} \in \Omega} \operatorname{VaR}_{\alpha}^{k}(\boldsymbol{x})\right]-\operatorname{VaR}_{\alpha}\left(\boldsymbol{x}^{*}\right) \\
& \leq E\left[\operatorname{VaR}_{\alpha}^{k}\left(\boldsymbol{x}^{*}\right)\right]-\operatorname{VaR}_{\alpha}\left(\boldsymbol{x}^{*}\right) \\
& =o(1 / \sqrt{N})+O\left(h^{2}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
E\left[\operatorname{VaR}_{\alpha}^{k}\left(\boldsymbol{x}_{N}^{*}\right)\right]-\operatorname{VaR}_{\alpha}\left(\boldsymbol{x}^{*}\right) & =E\left[\operatorname{VaR}_{\alpha}^{k}\left(\boldsymbol{x}_{N}^{*}\right)\right]-\min _{\boldsymbol{x} \in \Omega} \operatorname{VaR}_{\alpha}(\boldsymbol{x}) \\
& \geq E\left[\operatorname{VaR}_{\alpha}^{k}\left(\boldsymbol{x}_{N}^{*}\right)-\operatorname{VaR}_{\alpha}\left(\boldsymbol{x}_{N}^{*}\right)\right] \\
& =o(1 / \sqrt{N})+O\left(h^{2}\right)
\end{aligned}
$$

Thus, $\left|E\left[\operatorname{VaR}_{\alpha}^{k}\left(\boldsymbol{x}_{N}^{*}\right)\right]-\operatorname{VaR}_{\alpha}\left(\boldsymbol{x}^{*}\right)\right|=o(1 / \sqrt{N})+O\left(h^{2}\right)$.

3 Proof of Theorem 1

Proof. Notice that $\boldsymbol{\lambda}^{k}=\boldsymbol{\lambda}$ for all k. At the k-th iteration, the first-order optimality conditions of subproblems

$$
\begin{aligned}
& \boldsymbol{y}^{k+1}=\arg \min \left\{\mathcal{L}_{\sigma_{k}}\left(\boldsymbol{x}^{k}, \boldsymbol{y}, \boldsymbol{\lambda}^{k}\right) \mid \boldsymbol{y} \in \Re^{N}\right\} \\
& \boldsymbol{x}^{k+1}=\arg \min \left\{\mathcal{L}_{\sigma_{k}}\left(\boldsymbol{x}, \boldsymbol{y}^{k+1}, \boldsymbol{\lambda}^{k}\right) \mid \boldsymbol{x} \in \Omega\right\}
\end{aligned}
$$

are

$$
\begin{equation*}
0 \in \partial \phi\left(\boldsymbol{y}^{k+1}\right)+\boldsymbol{\lambda}+\sigma_{k}\left(\boldsymbol{y}^{k+1}+R \boldsymbol{x}^{k}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \in R^{T} \boldsymbol{\lambda}+\sigma_{k} R^{T}\left(\boldsymbol{y}^{k+1}+R \boldsymbol{x}^{k+1}\right)+N_{\Omega}\left(\boldsymbol{x}^{k+1}\right) \tag{2}
\end{equation*}
$$

respectively.
As (2) can be rewritten as

$$
0 \in R^{T} \boldsymbol{\lambda}+\sigma_{k} R^{T}\left(\boldsymbol{y}^{k+1}+R \boldsymbol{x}^{k}\right)+N_{\Omega}\left(\boldsymbol{x}^{k+1}\right)+\sigma_{k} R^{T} R\left(\boldsymbol{x}^{k+1}-\boldsymbol{x}^{k}\right)
$$

we have that

$$
0 \in-R^{T} \partial \phi\left(\boldsymbol{y}^{k+1}\right)+N_{\Omega}\left(\boldsymbol{x}^{k+1}\right)+\sigma_{k} R^{T} R\left(\boldsymbol{x}^{k+1}-\boldsymbol{x}^{k}\right)
$$

If Algorithm 1 terminates at the k-th iteration, then we have $\left\|\boldsymbol{y}^{k+1}+R \boldsymbol{x}^{k+1}\right\| \leq \epsilon_{1}$ and $\left\|\boldsymbol{x}^{k+1}-\boldsymbol{x}^{k}\right\| \leq \epsilon_{2}$, which indicates $\left(\boldsymbol{x}^{k+1}, \boldsymbol{y}^{k+1}\right)$ is an ϵ_{1}-feasible solution to $\left(P_{m}\right)$ satisfying $\boldsymbol{\eta}$-near first-order stationary condition, where $\|\boldsymbol{\eta}\|=\left\|\sigma_{k} R^{T} R\left(\boldsymbol{x}^{k+1}-\boldsymbol{x}^{k}\right)\right\|$ is of the order $O\left(\sigma_{k} \epsilon_{2}\right)$.

If Algorithm 1 does not terminate in a finite number of iterations, then there exists a convergent subsequence $\left\{\boldsymbol{x}^{k_{i}}\right\}$ with an accumulation point $\overline{\boldsymbol{x}}$ since Ω is bounded. By Lemma 4, for sufficient large k_{i}, we have $\left\|\boldsymbol{y}^{k_{i}+1}+R \boldsymbol{x}^{k_{i}}\right\| \leq \epsilon_{1}$, which also means that there exists a convergent subsequence of $\left\{\boldsymbol{y}^{k_{i}+1}\right\}$ with an accumulation point $\overline{\boldsymbol{y}}$. Furthermore, there exists a subsequence of $\left\{\left(\boldsymbol{x}^{k_{i}+1}, \boldsymbol{y}^{k_{i}+1}\right)\right\}$ with an accumulation point $(\tilde{\boldsymbol{x}}, \overline{\boldsymbol{y}})$. Without loss of generality, we still denote this convergent subsequence as $\left\{\left(\boldsymbol{x}^{k_{i}+1}, \boldsymbol{y}^{k_{i}+1}\right)\right\}$.

In the following, we show first that $\overline{\boldsymbol{x}}=\tilde{\boldsymbol{x}}$, and then we conclude that the second part of Theorem 1 holds. Since $\boldsymbol{x}^{k_{i}+1}=\arg \min \left\{\mathcal{L}_{\sigma_{k_{i}}}\left(\boldsymbol{x}, \boldsymbol{y}^{k_{i}+1}, \boldsymbol{\lambda}\right) \mid \boldsymbol{x} \in \Omega\right\}$ and $\boldsymbol{x}^{k_{i}}-\boldsymbol{x}^{k_{i}+1}$ is a feasible direction of Ω, we must have

$$
\nabla_{x} \mathcal{L}_{\sigma_{k_{i}}}\left(\boldsymbol{x}^{k_{i}+1}, \boldsymbol{y}^{k_{i}+1}, \boldsymbol{\lambda}\right)^{T}\left(\boldsymbol{x}^{k_{i}}-\boldsymbol{x}^{k_{i}+1}\right) \geq 0
$$

On the other hand, since $\mathcal{L}_{\sigma}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\lambda})$ is a quadratic function of variable \boldsymbol{x}, we have from Taylor expansion that

$$
\begin{aligned}
& \mathcal{L}_{\sigma_{k_{i}}}\left(\boldsymbol{x}^{k_{i}}, \boldsymbol{y}^{k_{i}+1}, \boldsymbol{\lambda}\right)-\mathcal{L}_{\sigma_{k_{i}}}\left(\boldsymbol{x}^{k_{i}+1}, \boldsymbol{y}^{k_{i}+1}, \boldsymbol{\lambda}\right) \\
& =\nabla_{x} \mathcal{L}_{\sigma_{k_{i}}}\left(\boldsymbol{x}^{k_{i}+1}, \boldsymbol{y}^{k_{i}+1}, \boldsymbol{\lambda}\right)^{T}\left(\boldsymbol{x}^{k_{i}}-\boldsymbol{x}^{k_{i}+1}\right)+\frac{\sigma_{k_{i}}}{2}\left(\boldsymbol{x}^{k_{i}}-\boldsymbol{x}^{k_{i}+1}\right)^{T} R^{T} R\left(\boldsymbol{x}^{k_{i}}-\boldsymbol{x}^{k_{i}+1}\right) \\
& \geq \frac{\alpha}{2}\left\|\boldsymbol{x}^{k_{i}}-\boldsymbol{x}^{k_{i}+1}\right\|^{2}
\end{aligned}
$$

where $\alpha=\frac{\sigma_{k_{i}} \lambda_{\min }\left(R^{T} R\right)}{2}$ and $\lambda_{\min }\left(R^{T} R\right)$ denotes the minimum eigenvalue of $R^{T} R$. Since $R^{T} R \succ 0$, we have $\alpha>0$.

By Lemma 4, $\sigma_{k_{i}}$ should be a constant for all the sufficient large k_{i} and we denote it as σ. Thus, for sufficient large k_{i}, we have

$$
\mathcal{L}_{\sigma}\left(\boldsymbol{x}^{k_{i}}, \boldsymbol{y}^{k_{i}+1}, \boldsymbol{\lambda}\right) \geq \mathcal{L}_{\sigma}\left(\boldsymbol{x}^{k_{i}+1}, \boldsymbol{y}^{k_{i}+1}, \boldsymbol{\lambda}\right) \geq \mathcal{L}_{\sigma}\left(\boldsymbol{x}^{k_{(i+1)}}, \boldsymbol{y}^{k_{(i+1)}+1}, \boldsymbol{\lambda}\right)
$$

which implies

$$
\mathcal{L}_{\sigma}(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \boldsymbol{\lambda})=\mathcal{L}_{\sigma}(\tilde{\boldsymbol{x}}, \overline{\boldsymbol{y}}, \boldsymbol{\lambda}) .
$$

Then taking limits on both sides of (3) yields

$$
\lim _{k_{i} \rightarrow+\infty} \frac{\alpha}{2}\left\|\boldsymbol{x}^{k_{i}}-\boldsymbol{x}^{k_{i}+1}\right\|^{2}=\frac{\alpha}{2}\|\overline{\boldsymbol{x}}-\tilde{\boldsymbol{x}}\|^{2}=0
$$

Denote

$$
\begin{equation*}
\overline{\boldsymbol{\lambda}}=\boldsymbol{\lambda}+\sigma(\overline{\boldsymbol{y}}+R \overline{\boldsymbol{x}})=\lim _{k_{i} \rightarrow+\infty} \boldsymbol{\lambda}+\sigma\left(\boldsymbol{y}^{k_{i}+1}+R \boldsymbol{x}^{k_{i}}\right)=\lim _{k_{i} \rightarrow+\infty} \boldsymbol{\lambda}+\sigma\left(\boldsymbol{y}^{k_{i}+1}+R \boldsymbol{x}^{k_{i}+1}\right) . \tag{3}
\end{equation*}
$$

According to Proposition 2.4.4 in Clarke (1983) and Lemma 3.6 in Balder (2008) on the continuous property on Clarke generalized gradient and the closedness property of the normal cone of a closed and bounded convex set, we have the following from the two conditions (1) and (2),

$$
0 \in \partial \phi(\overline{\boldsymbol{y}})+\overline{\boldsymbol{\lambda}} \text { and } 0 \in R^{T} \overline{\boldsymbol{\lambda}}+N_{\Omega}(\overline{\boldsymbol{x}}) .
$$

Hence, $0 \in-R^{T} \partial \phi(\overline{\boldsymbol{y}})+N_{\Omega}(\overline{\boldsymbol{x}})$, where $\|\overline{\boldsymbol{y}}+R \overline{\boldsymbol{x}}\| \leq \epsilon_{1}$. Therefore, $(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}})$ is an ϵ_{1}-feasible solution to $\left(P_{m}\right)$ satisfying the first-order stationary condition given by Proposition 2.

References

Balder EJ (2008) On generalized gradients and optimization. Technical report, INMB Ph.D. course "Convex Analysis for Optimization".

Bickel PJ (1967) Some contributions to the theory of order statistics. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics (The Regents of the University of California).

Clarke FH (1983) Optimization and Nonsmooth Analysis (New York: Wiley).
Yang SS (1985) A smooth nonparametric estimator of a quantile function. J. Amer. Statist. Assoc. 80:1004-1011.

