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1 Proof of Lemma 1

Proof. For given s, let r = [sN ]. Following Yang (1985), we have E[TN (λ)] −Q(λ) = I1 + I2,

where

I1 =

∫ 1

0
E

[

Xr,N −Q

(

r

N + 1

)]

1

h
K

(

s− λ

h

)

ds

and

I2 =

∫ 1

0

[

Q

(

r

N + 1

)

−Q(λ)

]

1

h
K

(

s− λ

h

)

ds.

Next, we prove I1 = o
(

1/
√
N
)

and I2 = O(1/N) + O
(

h2
)

uniformly for sufficiently large N

and small h.

Recall that, under Assumptions 1, 2 and 3, Theorem 2.2(b) in Bickel (1967) showed that,

for any 0 < a < 0.5, E[Xr,N − Q( r
N+1 )] = o(1/

√
N) holds uniformly for sufficiently large N

and r satisfying aN ≤ r ≤ (1− a)N , and this result is independent of the distribution F .

Choose a satisfying 0 < a < min{λ, 1 − λ} ≤ 0.5 and a > 2δ at the same time, where δ

are defined in Assumption 4. Then we have a − λ < 0 and 1 − a − λ > 0. Set h such that
a−λ
h < −c and 1−a−λ

h > c, which can be done as h → 0. More specifically, setting h small

enough such that the support set S = [−c, c] ⊂ [a−λ
h , 1−a−λ

h ] guarantees K(s−λ
h ) = 0 (and thus
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E[Xr,N −Q( r
N+1 )]

1
hK(s−λ

h ) = 0) for s ≤ a or s ≥ 1 − a − ǫ (ǫ is a sufficiently small number).

Then we have

I1 =

∫ 1

0
E

[

Xr,N −Q

(

r

N + 1

)]

1

h
K

(

s− λ

h

)

ds

=

∫ (1−a−ǫ)

a
E

[

Xr,N −Q

(

r

N + 1

)]

K

(

s− λ

h

)

d

(

s− λ

h

)

= o(1/
√
N)

uniformly, since K(·) is bounded and E[Xr,N − Q( r
N+1)] = o(1/

√
N) holds uniformly for

sufficiently large N and r satisfying aN ≤ r = [Ns] ≤ (1−a− ǫ)N +1 ≤ (1−a)N , and, again,

this result is independent of the distribution F .

Now we turn to demonstrate that I2 = O(1/N) + O
(

h2
)

holds uniformly for sufficiently

large N and small h. Notice that I2 = θ1 + θ2, where

θ1 =

∫ 1

0

[

Q

(

r

N + 1

)

−Q(s)

]

1

h
K

(

s− λ

h

)

ds and θ2 =

∫ 1

0
[Q(s)−Q(λ)]

1

h
K

(

s− λ

h

)

ds.

By the mean value theorem, we have

Q

(

r

N + 1

)

−Q(s) = Q′(rs)

(

r

N + 1
− s

)

,

where rs ∈ [r/(N+1), s] (if r/(N+1) < s) or rs ∈ [s, r/(N+1)] (if r/(N+1) ≥ s). Notice that

Ns− 1 < r = [Ns] < Ns+ 1 (implying (−1− s)/(N + 1) < r/(N + 1)− s < (1− s)/(N + 1))

and further that |Q′(rs)| < M1 because rs ∈ (δ, 1 − δ) for N ≥ 1. We then have

|θ1| =

∣

∣

∣

∣

∫ 1

0
Q′(rs)

(

r

N + 1
− s

)

K

(

s− λ

h

)

d

(

s− λ

h

)
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1−a

a
Q′(rs)

(

r

N + 1
− s

)

K

(

s− λ

h

)

d

(

s− λ

h

)
∣

∣

∣

∣

≤
∫ 1−a

a

∣

∣

∣

∣

Q′(rs)

(

r

N + 1
− s

)∣

∣

∣

∣

K

(

s− λ

h

)

d

(

s− λ

h

)

≤ M1

N + 1

∫ 1

0
(1 + s)K

(

s− λ

h

)

d

(

s− λ

h

)

= O(1/N),

where the last equality is due to that K(·) is bounded. Thus, we have θ1 = O(1/N).

For θ2, using Taylor’s expansion, we have

Q(s)−Q(λ) = Q′(λ)(s − λ) +
1

2
Q′′(sλ)(s − λ)2,
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where sλ is an interior point of the interval [s, λ] (if λ > s) or [λ, s] (if s ≥ λ). Thus

θ2 =

∫ 1

0
Q′(λ)(s− λ)

1

h
K

(

s− λ

h

)

ds+
1

2

∫ 1

0
Q′′(sλ) (s− λ)2

1

h
K

(

s− λ

h

)

ds.

Due to (s−λ) < [min{λ, (1−λ)}]−1(s−λ)2 for all s /∈ [0, 1], following the proof of Theorem

1 in Yang (1985), for the first integral of θ2, we have

∣

∣

∣

∣

∫ 1

0
Q′(λ)(s − λ)

1

h
K

(

s− λ

h

)

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

s/∈[0,1]
Q′(λ)(s − λ)

1

h
K

(

s− λ

h

)

ds

∣

∣

∣

∣

∣

≤ h2
∣

∣Q′(λ)
∣

∣ [min{λ, (1 − λ)}]−1

∫

s/∈[0,1]

(

s− λ

h

)2

K

(

s− λ

h

)

d

(

s− λ

h

)

= h2|Q′(λ)|[min{λ, (1 − λ)}]−1

∫

u/∈[−λ

h
, 1−λ

h
]
u2K(u)du,

where the first equality is due to Assumption 7. Since Q′(λ) is assumed to be bounded for all

distributions and the boundedness and finite support ofK(·) imply
∫

u/∈[−λ

h
, 1−λ

h
] u

2K(u)du < M3

for some constant M3 > 0, we have

∫ 1

0

1

h
K

(

s− λ

h

)

Q′(λ)(s− λ)ds = O(h2)

uniformly. We also have the following result for the second integral of θ2,

∣

∣

∣

∣

1

2

∫ 1

0
Q′′(sλ) (s− λ)2

1

h
K

(

s− λ

h

)

ds

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2

∫ 1−a

a
Q′′(sλ) (s− λ)2

1

h
K

(

s− λ

h

)

ds

∣

∣

∣

∣

≤ h2

2

∫ 1−a

a
|Q′′(sλ)|

(

s− λ

h

)2

K

(

s− λ

h

)

d

(

s− λ

h

)

≤ h2

2
M2

∫ 1

0

(

s− λ

h

)2

K

(

s− λ

h

)

d

(

s− λ

h

)

≤ h2

2
M2

∫

∞

−∞

u2K(u)du

= O(h2),

where the boundedness and finite support of K(·) implies
∫

∞

−∞
u2K(u)du < M4 for some

constant M4 > 0. Thus I2 = θ1+θ2 = O(1/N)+O(h2) holds independently of the distribution

F . Since O(1/N) = o(1/
√
N), we have E[TN (λ)]−Q(λ) = I1 + I2 = o(1/

√
N) +O(h2). �
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2 Proof of Proposition 1

Proof. By definition, VaR is exactly the α-quantile (VaRα = Q(α)). According to Lemma 1,

we have |E[VaRk
α(x)]−VaRα(x)| = o(1/

√
N) +O(h2) uniformly for x ∈ Ω. Then

E[VaRk
α(x

∗

N )]−VaRα(x
∗) = E[min

x∈Ω
VaRk

α(x)]−VaRα(x
∗)

≤ E[VaRk
α(x

∗)]−VaRα(x
∗)

= o(1/
√
N) +O(h2).

On the other hand,

E[VaRk
α(x

∗

N )]−VaRα(x
∗) = E[VaRk

α(x
∗

N )]−min
x∈Ω

VaRα(x)

≥ E[VaRk
α(x

∗

N )−VaRα(x
∗

N )]

= o(1/
√
N) +O(h2).

Thus, |E[VaRk
α(x

∗

N )]−VaRα(x
∗)| = o(1/

√
N) +O(h2). �

3 Proof of Theorem 1

Proof. Notice that λk = λ for all k. At the k-th iteration, the first-order optimality conditions

of subproblems

yk+1 = argmin
{

Lσk
(xk,y,λk) | y ∈ ℜN

}

,

xk+1 = argmin
{

Lσk
(x,yk+1,λk) | x ∈ Ω

}

.

are

0 ∈ ∂φ(yk+1) + λ+ σk(y
k+1 +Rxk) (1)

and

0 ∈ RTλ+ σkR
T (yk+1 +Rxk+1) +NΩ(x

k+1), (2)

respectively.

As (2) can be rewritten as

0 ∈ RTλ+ σkR
T (yk+1 +Rxk) +NΩ(x

k+1) + σkR
TR(xk+1 − xk),

we have that

0 ∈ −RT∂φ(yk+1) +NΩ(x
k+1) + σkR

TR(xk+1 − xk).

4



If Algorithm 1 terminates at the k-th iteration, then we have ‖yk+1 + Rxk+1‖ ≤ ǫ1 and

‖xk+1 − xk‖ ≤ ǫ2, which indicates (xk+1,yk+1) is an ǫ1-feasible solution to (Pm) satisfying

η-near first-order stationary condition, where ‖η‖ = ‖σkRTR(xk+1 − xk)‖ is of the order

O(σkǫ2).

If Algorithm 1 does not terminate in a finite number of iterations, then there exists a

convergent subsequence {xki} with an accumulation point x̄ since Ω is bounded. By Lemma

4, for sufficient large ki, we have ‖yki+1 + Rxki‖ ≤ ǫ1, which also means that there exists a

convergent subsequence of {yki+1} with an accumulation point ȳ. Furthermore, there exists a

subsequence of {(xki+1,yki+1)} with an accumulation point (x̃, ȳ). Without loss of generality,

we still denote this convergent subsequence as {(xki+1,yki+1)}.

In the following, we show first that x̄ = x̃, and then we conclude that the second part

of Theorem 1 holds. Since xki+1 = argmin{Lσki
(x,yki+1,λ) | x ∈ Ω} and xki − xki+1 is a

feasible direction of Ω, we must have

∇xLσki
(xki+1,yki+1,λ)T (xki − xki+1) ≥ 0.

On the other hand, since Lσ(x,y,λ) is a quadratic function of variable x, we have from Taylor

expansion that

Lσki
(xki ,yki+1,λ)− Lσki

(xki+1,yki+1,λ)

= ∇xLσki
(xki+1,yki+1,λ)T (xki − xki+1) +

σki
2

(xki − xki+1)TRTR(xki − xki+1)

≥ α

2
‖xki − xki+1‖2,

where α =
σki

λmin(RTR)

2 and λmin(R
TR) denotes the minimum eigenvalue of RTR. Since

RTR ≻ 0, we have α > 0.

By Lemma 4, σki should be a constant for all the sufficient large ki and we denote it as σ.

Thus, for sufficient large ki, we have

Lσ(x
ki ,yki+1,λ) ≥ Lσ(x

ki+1,yki+1,λ) ≥ Lσ(x
k(i+1) ,yk(i+1)+1,λ),

which implies

Lσ(x̄, ȳ,λ) = Lσ(x̃, ȳ,λ).

Then taking limits on both sides of (3) yields

lim
ki→+∞

α

2
‖xki − xki+1‖2 = α

2
‖x̄− x̃‖2 = 0.
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Denote

λ̄ = λ+ σ(ȳ +Rx̄) = lim
ki→+∞

λ+ σ(yki+1 +Rxki) = lim
ki→+∞

λ+ σ(yki+1 +Rxki+1). (3)

According to Proposition 2.4.4 in Clarke (1983) and Lemma 3.6 in Balder (2008) on the contin-

uous property on Clarke generalized gradient and the closedness property of the normal cone

of a closed and bounded convex set, we have the following from the two conditions (1) and (2),

0 ∈ ∂φ(ȳ) + λ̄ and 0 ∈ RT λ̄+NΩ(x̄).

Hence, 0 ∈ −RT∂φ(ȳ) + NΩ(x̄), where ‖ȳ + Rx̄‖ ≤ ǫ1. Therefore, (x̄, ȳ) is an ǫ1-feasible

solution to (Pm) satisfying the first-order stationary condition given by Proposition 2. �
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