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Abstract. In this paper, we consider the so-called worst-case linear optimization (WCLO)
with uncertainties on the right-hand side of the constraints. Such a problem often arises in
applications such as in systemic risk estimation in finance and stochastic optimization. We
first show that the WCLO problem with the uncertainty set corresponding to the l p-norm
((WCLOp)) is NP-hard for p ϵ (1,∞). Second, we combine several simple optimization tech-
niques, such as the successive convex optimization method, quadratic convex relaxa-
tion, initialization, and branch-and-bound (B&B), to develop an algorithm for (WCLO2)
that can find a globally optimal solution to (WCLO2) within a prespecified ε-tolerance. We
establish the global convergence of the algorithm and estimate its complexity. We also
develop a finite B&B algorithm for (WCLO∞) to identify a global optimal solution to the
underlying problem, and establish the finite convergence of the algorithm. Numerical
experiments are reported to illustrate the effectiveness of our proposed algorithms in
finding globally optimal solutions to medium and large-scale WCLO instances.
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1. Introduction
Linear optimization (LO) with uncertainty arises from a
broad range of applications (Birge and Louveaux 1997,
Bertsimas et al. 2011). Two popular approaches for
uncertain LO are stochastic programming (Birge and
Louveaux 1997) and robust optimization (Ben-Tal
et al. 2009, Bertsimas et al. 2011), where deci-
sions have to be made before the realization of the
uncertain data. In practice, there exist cases where
some decisions are of a “wait-and-see” type and can
be made after partial realization of the uncertain
data. One such example is the so-called adjustable
robust optimization (Ben-Tal et al. 2004). There are
also cases where it is critical to identify the worst-
case scenario of the underlying uncertain LO prob-
lem. One such example is the assessment of sys-
temic risk in a financial network where only limited
and incomplete information regarding the network
is available (Eisenberg and Noe 2001, Peng and
Tao 2015).

In this paper, we consider the following worst-case
linear optimization (WCLO) problemwith uncertainties
on the right-hand side of the constraints:

WCLOp
( )

max
b∈8p

min
x∈- b( )

cTx,

where -(b) :� {x∈Rn :Ax≤ b, x≥ 0}, and 8p ⊆ Rm de-
notes the uncertainty set corresponding to the �p-norm
defined by

8p :� b � Qu + b0 : ‖u‖p ≤ 1, u ∈ Rr
{ }

, 1 ≤ p ≤ ∞.

Here,A∈Rm×n, c ∈Rn,Q ∈Rm×r for some r ≤ m, b0 ∈ Rm,
and ‖·‖p denotes the �p-norm on Rr, 1 ≤ p < ∞, de-
fined by ‖u‖p � (∑r

i�1 |ui|p)1/p and ‖u‖∞ �maxi�1,...,r |ui|.
As pointedout byPeng and Tao (2015), such a problem
arises naturally in estimating the systemic risk in fi-
nancial systems (Eisenberg and Noe 2001) where the
uncertainty appears in the assets of financial institutions
due to market shocks.
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The WCLO model with uncertainties also appears
as a subproblem in the two-stage stochastic optimi-
zation and robust optimization for a wide spectra of
applications (Birge and Louveaux 1997; Ben-Tal and
Nemirovski 1999; Bertsimas and Goyal 2010, 2012;
Shu and Song 2014). The single-ellipsoid uncertainty
set 82 has been a very popular choice in modeling
uncertainty and approximating the general convex
uncertainty set (Ben-Tal 1998, Ben-Tal andNemirovski
1999). Shu and Song (2014) considered the three un-
certainty sets 8p (p � 1, 2,∞) in the two-stage robust
optimization models and estimated the complexities
of the corresponding models. Peng and Tao (2015)
showed that (WCLO2) is NP-hard.

One major goal of this work is to extend the results
of Peng and Tao (2015) and Shu and Song (2014) to the
generic casewith p ∈ (1,∞). Specifically, we show that
(WCLOp) is strongly NP-hard for fixed p > 1 and NP-
hard when p � ∞. We also present a new LO refor-
mulation for (WCLO1) and demonstrate that our new
reformulation is computationally more effective than
the model by Shu and Song (2014).

Another goal of this work is to develop effective
algorithms to find a strong bound or the global op-
timal solution for (WCLOp) with p � 2 and p � ∞,
respectively. It should be mentioned that, due to the
hardness of the (WCLO2) problem, several researchers
have proposed tractable approaches to obtain an
approximate solution to it. For example, Ben-Tal et al.
(2004) developed a two-stage robust optimization
approach that can provide an upper bound to (WCLO2)
by reformulating it as a functional optimization problem
and restricting feasible functional solutions to be affine.
Bertsimas and Goyal (2010, 2012) further estimated
the approximation rate of the solution obtained from
the robust optimization model. Different from the
aforementioned robust optimization approach, Peng
and Tao (2015) transformed (WCLO2) into a non-
convex quadratically constrained linear optimization
(QCLO) problem, which can be relaxed to semi-
definite optimization. The semidefinite relaxation (SDR)
has been widely used to obtain bounds and approxi-
mate solutions for many hard optimization problems
(Goemans and Williamson 1995; Nesterov 1998; Ye
1999; Anstreicher 2009; Saxena et al. 2010, 2011; Peng
et al. 2015; Luo et al. 2019a). Specifically, Peng and
Tao (2015) proposed an enhanced nonlinear SDR for
(WCLO2) derived by adding a nonconvex quadratic
cut to the standard SDR and developed a bisection
search procedure to find the optimal solution of the
nonlinear SDR. In this work, we will discuss how to
further enhance the nonlinear SDR for (WCLO2).

Effective global algorithms for subclasses of quadratic
programming (QP) problems have been reported in
the literature. Floudas and Visweswaran (1994) and
Pardalos (1991) summarized various algorithms and

theoretical results on QP up to that time. As pointed
out by Floudas and Visweswaran (1994), most exist-
ing global algorithms for nonconvex QP use a branch-
and-bound (B&B) procedure, which is finitely conver-
gent but with a complexity exponential in terms of the
numbers of variables. Vandenbussche and Nemhauser
(2005) used the first-order Karush-Kuhn-Tucker (KKT)
conditions to develop a finite B&B algorithm for box-
constrainedQP.Burer andVandenbussche (2008, 2009)
proposed a B&B method for linearly constrained
nonconvex quadratic programming (LCQP) in which
SDRs of the first-order KKT conditions of LCQP are
used with finite KKT branching. Chen and Burer
(2012) further adopted the so-called completely copos-
itive program to improve the B&B approach for LCQP.
Both the cutting plane methods and B&B approaches
have been developed for a special subclass of QP
(bilinear programming problems) (Al-Khayyal and
Falk 1983, Sherali and Alameddine 1992, Audet et al.
1999, Alarie et al. 2001, Ding and Al-Khayyal 2007).
Recently, Luo et al. (2019b) combined several simple
optimization techniques, including the alternative
direction method, convex relaxation, and initializa-
tion, to develop a new global algorithm for QP with a
few negative eigenvalues subject to linear and convex
quadratic constraints. Numerical experiments dem-
onstrated that the proposed approach by Luo et al.
(2019b) can effectively find the globally optimal so-
lution to large-scale nonconvex QPs when the involved
Hessian matrix has only a few negative eigenvalues.
Motivated by the success of the approach by Luo

et al. (2019b), in this paper, we develop effective
global solvers for medium and large-scale problem
(WCLOp) with p � 2,∞. For such a purpose, by fol-
lowing a procedure similar to that of Peng and Tao
(2015), we first cast (WCLO2) as an equivalent �2-norm
maximization problem, which can further be refor-
mulated as a QCLO problem. Then, we introduce
artificial variables to lift the QCLO into a higher di-
mensional space. We also propose the use of a linear
function to approximate the negative quadratic term
in the constraint function of the lifted problem, resulting
in a convex quadratic approximation of the origi-
nal nonconvex QCLO. Based on the solution to this
convex approximation problem, we develop a suc-
cessive convex optimization (SCO) approach for solving
QCLO that updates variable and parameter alterna-
tively.We show that the sequence generatedby the SCO
approach converges to a KKT point of the reformulated
QCLO problem. Then, we combine the SCO algo-
rithm with the B&B framework, convex relaxation,
and initialization technique to develop an efficient
global algorithm (called SCOBB) that can find a global
optimal solution to (WCLO2) within a prespecified ε
tolerance. We establish the convergence of the algo-
rithm and show that the SCOBB algorithm has a
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complexity bound 2(N∏r
i�1	 r̅

√ (ziu−zil)
2ε �), where N is the

complexity to solve a relaxed subproblem (a convex
QP); zl and zu ∈ Rr denote the lower and upper bounds
of z, respectively; and −‖z‖22 is the only negative
quadratic term in the constraint of the lifted prob-
lemof (WCLO2). Numerical experiments demonstrate
that the SCOBB algorithm can effectively find a globally
optimal solution for randomly generated medium and
large-scale instances of (WCLO2) in which the column
number r of the matrix Q is less than or equal to 10. For
generic (WCLO2) with large r, we develop a hybrid
algorithm that integrates the SCO approach with a
strengthened nonlinear SDR, where the strengthened
nonlinear SDR is derived by adding a series of dis-
junctive cuts based on the information from the so-
lution of the current nonlinear SDR from Peng and
Tao (2015). Our numerical experiments show that the
solutions derived by the hybrid algorithm are optimal
for most test problems, and the resulting gap is much
smaller than that from the nonlinear SDR of Peng and
Tao (2015).

We also propose a global algorithm for (WCLO∞).
By using the duality theory for LO, we first cast
(WCLO∞) as an equivalent �1-norm maximization
problem,which is further reformulated as an equivalent
LO problem with complementarity constraints. Then,
we propose a finite B&B algorithm that integrates LO
relaxation with finite complementarity branching for
finding a globally optimal solution of (WCLO∞). The
finite convergence of the algorithm is proved as well.

The remainder of the paper is organized as follows.
In Section 2, we present the equivalent convex max-
imization formulation for (WCLOp) with p ∈ (1,∞].
Specifically, we show that (WCLOp)with p ∈ (1,∞) is
stronglyNP-hard, (WCLO∞) is NP-hard, and (WCLO1)
is equivalent to a tractable LO problem. In Section 3,
we propose the SCO method for (WCLO2) and in-
vestigate its convergence properties. In Section 4,
based on the SCO method and quadratic convex re-
laxation, we introduce a B&B procedure to find a
globally optimal solution to (WCLO2). We also es-
tablish global convergence of the proposed algorithm
and its complexity. In Section 5, we propose a fi-
nite B&B algorithm for (WCLO∞). In Section 6.1, we
consider an application of WCLO (i.e., the worst-case
estimation of the systemic risk in Eisenberg and Noe
2001). In Section 6.2, we integrate the proposed global
algorithms for WCLO to develop global algorithms
for the two-stage adaptive robust optimization under
the �p-norm–based uncertainty set. We test the per-
formance of the proposed algorithms and report nu-
merical results in Section 7. Finally, we conclude the
paper in Section 8 by discussing some future research
directions. Proofs of all the technical results are provided
in the online supplement to this paper.

2. The Hardness of the WCLO Model
In this section, we first reformulate (WCLOp)with p ∈
(1,∞] as an equivalent �q-norm maximization prob-
lem with 1 ≤ q < ∞. Then, we show that (WCLOp) is
strongly NP-hard when p ∈ (1,∞), NP-hard when
p � ∞, and polynomial-time solvable when p � 1. We
also show that the WCLO model under a polyhedral
uncertainty set is strongly NP-hard.

2.1. The Model (WCLOp) with p ∈ (1,∞)
We first reformulate (WCLOp) with p ∈ (1,∞) as an
equivalent �q-norm maximization problem and dis-
cuss how to recover a global solution to (WCLOp) from
the solution of the reformulated problem. For this,
let QTy �� 0, q > 1, and let us define μ(y; q) ∈ Rr by

μi y; q
( ) � sign qTi y

( )
qTi y
⃒⃒ ⃒⃒q−1 QTy

⃦⃦ ⃦⃦1−q
q , i � 1, . . . , r, (1)

where sign(·) denotes the sign function and qi ∈ Rm

denotes the ith column of matrix Q. We then have the
following proposition.

Proposition 1. (WCLOp) with p ∈ (1,∞) has the same
optimal value with the following �q-norm maximization
problem:

max fq y
( )

:� ‖QTy‖q + bT0y

s.t. y ∈ # :� y ∈ Rm|ATy ≤ c, y ≤ 0
{ }

,
(2)

where q > 1 and 1
p + 1

q � 1. Furthermore, let y∗ be a globally
optimal solution of Problem (2) satisfying QTy∗ �� 0. Then,
we can recover a globally optimal solution of (WCLOp)
with p ∈ (1,∞) by b∗ � Qμ(y∗; q) + b0, where μ(y∗; q) ∈ Rr

is defined by (1).

The following result follows from Theorem 4.1 in
Mangasarian and Shiau (1986).

Proposition 2. The norm maximization Problem (2) is NP-
hard for q ∈ [1,∞).
We next present a stronger result regarding the

hardness of Problem (2) for fixed q ∈ (1,∞).
Theorem 1. The normmaximization Problem (2) is strongly
NP-hard for q ∈ (1,∞).
The proof of Theorem 1 follows a similar vein as the

proof of the main result in Ge et al. (2011), where the
authors proved the strong NP-hardness of the �q-norm
minimization problem miny∈# ‖y‖q with 0 < q < 1. For
self-completeness, we give the proof in the online
supplement to this paper.
From Theorem 1 and Proposition 1, we immedi-

ately obtain the following result.

Proposition 3. (WCLOp) is strongly NP-hard for p ∈ (1,∞).
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2.2. The Model (WCLOp) with p � 1,∞
First, we reformulate (WCLO∞) as an �1-norm max-
imization problem.

Proposition 4. (WCLO∞) has the same optimal value with
the following �1-norm maximization problem:

max
y∈#

f1 y
( )

:� QTy
⃦⃦ ⃦⃦

1 + bT0y. (3)

Moreover, denote by y∗ the globally optimal solution of
Problem (3). Then, we can recover a globally optimal so-
lution of (WCLO∞) by b∗ � Qu∗ + b0, where u∗ ∈ Rr is
defined by

u∗i �
1, qTi y

∗ ≥ 0,
−1, qTi y

∗ < 0,
i � 1, . . . , r,

{
(4)

and qi ∈ Rm denotes the ith column vector of matrix Q.

From Propositions 4 and 2, we immediately have
the following result.

Proposition 5. (WCLO∞) is NP-hard.

Next, we show that (WCLO1) can be solved via
solving a series of LO problems. Let Ir be the identity
matrix of order r and ei denote the ith column of the
matrix (Ir,−Ir), i � 1, . . . , 2r.

Proposition 6. Let z∗1 be the optimal value of (WCLO1).
Then, z∗1 � maxi�1,...,2r{cTx̄i}, where x̄i is the optimal solu-
tion of the following LO problem:

min cTx : Ax ≤ Qei + b0, x ≥ 0
{ } (5)

for i � 1, . . . , 2r. Furthermore, let i0 � argmaxi�1,...,2r{cTx̄i}
and x̄i0 be the optimal solution to the corresponding LO
problem in (5). Then, we can recover the optimal solution of
(WCLO1) by b∗ � Qei0 + b0.

We remark that Shu and Song (2014) reformulate
(WCLO1) as the following LO problem:

min
z,x1,...,x2r

z

s.t. z ≥ cTxi, i � 1, . . . , 2r,

Axi ≤ Qei + b0, i � 1, . . . , 2r,

xi ≥ 0, i � 1, . . . , 2r.

(6)

Proposition 6 presents a decomposition approach to
solve the aforementioned problem. As we shall see
later, our new approach computationally outperforms
the one by Shu and Song (2014).

2.3. The WCLO Model Under the Polyhedron-Based
Uncertainty Set

Observe that the uncertainty set 8p is a special
polyhedron when p � 1,∞. We then focus on the

WCLO model under the general polyhedral uncer-
tainty set

max
b∈8

min
x∈- b( )

cTx, (7)

where8 :�{b�Qu+b0 :Pu≤ξ, u∈[−1,1]r}with P∈Rl×r,
and ξ ∈ Rl denotes the polyhedral uncertainty set.
Note that Problem (7) canbe converted into a linearmax-
min (LMM) problem of the form maxu∈9minx∈+(u) cTx,
where9 :� {u ∈ [−1, 1]r : Pu ≤ ξ}, and+(u) :�{x∈Rn+ :
Ax −Qu ≤ b0}. Hansen et al. (1992, theorem 3.1)
showed that the LMM problem is strongly NP-hard.
Therefore, we can obtain the following result.

Proposition 7. TheWCLO Problem (7) is strongly NP-hard.

It is worth mentioning that both Problems (2) and (3)
are nonconvex, and their global optimal solutions
are hard to obtain. In the subsequent sections, we will
develop effective algorithms to find global optimal
solutions to these two problems.

3. The SCO Method and Its
Convergence Properties

In this section, we present an SCO approach for
Problem (2) with q � 2 and explore its convergence
property to a KKT point of the reformulated QCLO
problem. To start, we assume that the following as-
sumption always holds.

Assumption 1. The set # :� {y ∈ Rm|ATy ≤ c, y ≤ 0} is
bounded.

Assumption 1 ensures the existence of optimal so-
lutions of Problem (2). One can show that if thematrix
A is of full row rank, thenAssumption 1 always holds.
We also observe that if QTy � 0 for any y ∈ #, then
Problem (2) reduces to an LO problem maxy∈# bT0y. To
avoid this trivial case, wemake the following assumption.

Assumption 2. There exists some y0 ∈ # such that QTy0 �� 0.

As mentioned by Peng and Tao (2015), Problem (2)
with q � 2 can be reformulated as the following linear
optimization problem with a nonconvex quadratical
constraint (QCLO):

max t

s.t. h t, y
( )

:� t − bT0y
( )2− QTy

⃦⃦ ⃦⃦2
2 ≤ 0,

y ∈ #.

(8)

Next, we lift Problem (8) to a higher dimensional
space as follows:

max t

s.t. t − bT0y
( )2− z‖ ‖22 ≤ 0,

QTy � z, y ∈ #.

(9)
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Let zl and zu ∈ Rr be lower and upper bounds of z �
QTy over #, respectively, obtained via solving the
following LO problems, respectively:

zil � min
y∈#

qTi y, ziu � max
y∈#

qTi y, i � 1, . . . , r, (10)

where qi is the ith columnvector ofmatrixQ. For every
μ ∈ [zl, zu], it holds that

− z‖ ‖22 ≤ − μ
⃦⃦ ⃦⃦2

2 − 2μT z − μ
( ) � −2μTz + μ

⃦⃦ ⃦⃦2
2,

∀z ∈ zl, zu[ ]. (11)
Take μ � QTy0 �� 0 for some y0 ∈ # by Assumption 2.
Using the linear function−2μTz + ‖μ‖22 to approximate
the negative quadratic term −‖z‖22 in the constraint of
lifted Problem (9), we derive the following quadratic
convex approximation:

max
t,y

t

s.t. gμ t, y
( )

:� t − bT0y
( )2 − 2μTQTy + μ

⃦⃦ ⃦⃦2
2 ≤ 0,

y ∈ #,

(12)

where μ � QTy0 �� 0 for some y0 ∈ #. Note that in-
equality (11)with z � QTy implies that gμ(t, y) ≥ h(t, y);
thus, the optimal solution of Problem (12) is also
feasible for Problem (8). Hence, the objective function
value at the optimal solution of Problem (12) provides
a lower bound to Problem (8).

Denote by ^ � {(t, y) ∈ R × # | h(t, y) ≤ 0} the feasi-
ble set of Problem (8). Let us define

^μ � t, y
( ) ∈ R × # | gμ t, y

( ) ≤ 0
{ }

,

int^μ � t, y
( ) ∈ R × # | gμ t, y

( )
< 0

{ }
.

We now state a simple property of the sets ^μ and
int^μ.

Lemma1. Let μ � QTy0 �� 0 for some y0 ∈ #. Then,^μ is a
nonempty closed convex set in ^ and int^μ �� ∅.

From Lemma 1, we see that Problem (12) is feasible
and well-defined, and the Slater condition holds
for Problem (12). The following proposition follows
immediately.

Proposition 8. Suppose that μ̄ � QTȳ �� 0 for some ȳ ∈ #.
If (t̄, ȳ) is the optimal solution of Problem (12) with μ � μ̄,
then (t̄, ȳ) is a KKT point of Problem (8).

We now describe the SCO method for Problem (8).

Algorithm 1 (SCO( y0, ε))
Input: Initial point y0 ∈ #with QTy0 �� 0 and stopping

criterion ε > 0.
Step 0 Set t0 � bT0y

0 and μ0 � QTy0. Set k � 0.
Step 1 Solve Problem (12) with μ � μk to obtain the
optimal solution (tk+1, yk+1). Set μk+1 � QTyk+1.

Step 2 If ‖μk+1 − μk‖ > ε, then set k � k + 1 and go back
to Step 1; otherwise, stop and output (tk, yk) as the
final solution.

Note that because {yk} ⊆ # and # is bounded by
Assumption 1, there exists at least one accumulation
point for the sequence {yk} generated by Algorithm 1.
We next present several technical results regarding

the sequences {(tk,yk)} and {μk}generatedbyAlgorithm1.

Lemma 2. Let the sequence {(tk, yk)} be generated by Al-
gorithm 1. Then, {(tk, yk)} ⊆ ^.

Lemma 3. Let the sequence {μk} be generated byAlgorithm 1.
Then, μk �� 0 and int^μk �� ∅ for all k.

Lemma4. Let the sequence {tk} be generated byAlgorithm 1.
Then, {tk} is a nondecreasing and convergent sequence.

BasedonLemmas 1–4, weobtain the following lemma.

Lemma 5. Let the sequence {(tk, μk, yk)} be generated by
Algorithm 1 with an accumulation point (t̂, μ̂, ŷ) satisfying
QTŷ �� 0. Then, (t̂, ŷ) ∈ ^μ̂ and t ≤ t̂ for any (t, y) ∈ ^μ̂.

Lemma 5 indicates that any accumulation point
(t̂, ŷ) of the sequence {(tk, yk)} generated byAlgorithm 1
is the optimal solution to Problem (12) with μ � μ̂ �
QTŷ �� 0. Combining Lemma 5 with Proposition 8, we
immediately obtain the following theorem.

Theorem 2. Let ε � 0 and {(tk, yk)} be a sequence generated
by Algorithm 1. Then, any accumulation point (t̄, ȳ) of
the sequence {(tk, yk)} with QTȳ �� 0 is a KKT point of
Problem (8).

Theorem 2 shows that the SCO algorithm converges
to a KKT point of Problem (8). As we shall see later, this
property of the SCO facilitates the design of a new global
solver for Problem (8). For example, the solution derived
by the SCO can be used as a lower bound in the new
B&B approach to be introduced in the next section.

3.1. Initialization of the SCO Algorithm
In this subsection,wedescribe how tofind a startingpoint
y0 or multiple starting points for the SCO algorithm. For
this, we propose to solve the following LO problems:

max
y,z

ξTj z : y ∈ #, QTy � z
{ }

, j � 1, . . . , ρ, (13)

where ρ and ξj are chosen either by ρ � 2r and
ξj ∈ {−1, 1}r, j ∈ {1, . . . , ρ}, or by ρ � 2r, ξj � ej, ξj+r �
−ej, j � 1, . . . , r. Here, ej denotes the jth unit vector of
Rr, and r is the column number of matrix Q.
The following proposition states that solving the

series of LO problems in (13) can generate at least one
feasible solution y0 ∈ # with QTy0 �� 0.

Proposition 9. Let (y0j , z0j ) be the optimal solution of Prob-
lem (13) for j � 1, . . . , ρ. Then, J � {j : z0j �� 0, j� 1, . . . ,ρ} �� ∅.
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4. A Global Optimization Algorithm
for (WCLO2)

In this section, we develop an algorithm to find a
global optimal solution for (WCLO2) within a pre-
scribed ε tolerance via combining the SCO approach,
a B&B framework, convex relaxation, and initializa-
tion techniques. We also establish the convergence of
the algorithm and estimate its complexity.

4.1. The Quadratic Convex Relaxation
We consider a restricted version of the lifted Prob-
lem (9) where the variable z is in a rectangle [l, u]:

max t

s.t. t − bT0y
( )2 − ‖z‖22 ≤ 0,

QTy � z, z ∈ l,u[ ], y ∈ #,

(14)

where l, u ∈ Rr with [l,u] ⊆ [zl, zu], and zl, zu ∈ Rr are
given in (10). Let si � z2i for i � 1, . . . , r. The convex
envelope of si � z2i on [li,ui] is {(si, zi) : z2i ≤ si, si ≤
(li + ui)zi − liui}. We can then derive the following
convex relaxation for Problem (14):

max
t,y,z,s

t

s.t. t − bT0y
( )2−∑r

i�1
si ≤ 0,

QTy � z, y ∈ #, z ∈ l,u[ ],
z2i ≤ si, si ≤ li + ui( )zi − liui, i � 1, . . . , r.

(15)

As pointed out in the introduction, there exist other
strong relaxation models, such as the linear and non-
linear SDR, for (WCLO2) that usually involve intensive
computation. In this work, we integrate the relaxation
model (15) with other simple optimization techniques
to develop a global algorithm for (WCLO2). Our choice
is based on the relative simplicity of the relaxation
model (15) and its good approximation behavior as
shown in our next theorem, which compares the ob-
jective values at the optimal solutions to Problem (14)
and its relaxation (15).

Theorem 3. Let f ∗[l,u] and v∗[l,u] be the optimal values of
Problem (14) and its relaxation (15), respectively. Let
(t̄, ȳ, z̄, s̄) be the optimal solution to Problem (15). Then,

0 ≤ v∗l,u[ ] − f ∗l,u[ ] ≤ v∗l,u[ ] − f2 ȳ
( )

≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑r
i�1

s̄i − z̄2i
( )√

≤ 1
2
‖u − l‖2. (16)

We now rewrite Problem (14) as the following:

max f2 y
( )

:� QTy
⃦⃦ ⃦⃦

2 + bT0y

s.t. l ≤ QTy ≤ u, y ∈ #.
(17)

Note that the Problems (14) and (17) are equivalent in
the sense that they have the same optimal solutions
and optimal value.
From Theorem 3, we immediately have the fol-

lowing corollary.

Corollary 1. Let (t̄, ȳ, z̄, s̄) be an optimal solution to Prob-
lem (15) and ε > 0. If

∑r
i�1[s̄i − z̄2i ] ≤ ε2, then ȳ is an

ε-optimal solution to Problem (17).

Theorem 3 indicates that when ‖u − l‖∞ is very
small, the relaxed model (15) can provide a good
approximation for Problem (17). Moreover, from
Theorem 3 and Corollary 1, if ‖u − l‖∞ ≤ 2ε/

̅̅
r

√
, then ȳ

can be viewed as an ε-approximation solution to
Problem (17). Motivated by this observation, we can
divide the interval [zil, ziu] into 	 r̅

√ (ziu−zil)
2ε � subintervals

such that each subinterval has awidth of 2ε/
̅̅
r

√
, where

zil, z
i
u are defined in (10). Then,we can solve the relaxed

Problem (15) for every subrectangle to obtain an
ε-approximate solution for the restricted Problem (17)
over this subrectangle. After that, we can choose the
best solution from the obtained approximate solu-
tions as the final solution, which is clearly a global
ε-approximate solution to Problem (8). From the
above discussion, we can see that such a partitioning
procedure can provide an ε-approximate solution
to Problem (8). For convenience, we call such a pro-
cedure the brutal force algorithm. The following result is
an immediate consequence of our above discussion.

Theorem 4. The brutal force partitioning algorithm can
find a global ε-approximate solution to Problem (8) in

2(N∏r
i�1	 r̅

√ (ziu−zil)
2ε �) time, where N is the complexity to solve

Problem (15).

We remark that the brutal force algorithm is too
conservative because it searches within very small
subrectangles and thus is not effective. In the next
subsection, we will discuss how to integrate the SCO
algorithm with other techniques to develop an ef-
fective global algorithm for Problem (8).

4.2. The SCOBB Algorithm
In this subsection, we present a global algorithm
(termed SCOBB) for Problem (8) that integrates the
SCO algorithm with branch-and-bound techniques
based on quadratic convex relaxation. Different from
the other existing global algorithms for LCQP, the
SCOBB algorithm has the following two features:
i. It can either check the global optimality of the

solutions computed by SCO or improve the lower
bound by restarting SCO under certain circumstance.
ii. It can utilize the lower bound computed by the

SCO to accelerate the convergence.
We are now ready to present the new global al-

gorithm for Problem (8).

Luo et al.: Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties
INFORMS Journal on Computing, 2021, vol. 33, no. 1, pp. 180–197, © 2020 INFORMS 185



Algorithm 2 (The SCOBB Algorithm)
Input: Q, c,A, b0, and stopping criteria ε > 0.
Output: an ε-optimal solution y∗.
Step 0 (Initialization)

(i) Set l0 � zl and u0 � zu, where zl and zu are computed
by (10).

(ii) Let r be the column number of matrix Q. If
r ≤ 5, set ρ � 2r, ξj ∈ {−1, 1}r, j ∈ {1, . . . , ρ}. Else,
set ρ� 2r+2, ξj � ej, ξj+r �−ej, j� 1, . . . ,r, ξ2r+1 � e,
ξ2r+2 �−e, where ej denotes the jth unit vector of
Rr, and e ∈ Rr is the vector of all ones. Solve the LO
problems in (13) to get optimal solutions (ȳj, z̄j),
j � 1, . . . , ρ. Set J � {j : z̄j �� 0, j � 1, . . . , ρ}.

Step 1 Find KKT points y0j of Problem (8) by running
SCO(y0, ε)withy0 � ȳj for j∈ J. Sety∗ � argmax{f2(y0j ),
j∈ J}, v∗ � f2(y∗).

Step 2 Solve Problem (15) over [l, u] � [l0,u0] to obtain
an optimal solution (t0, y0, z0, s0). If f2(y0) > v∗, then
update lower bound v∗ � f2(y0) and solution y∗ � y0.
Set k � 0, @k :� [lk, uk], Ω :� {[@k, (tk, yk, zk, sk)]}.

Step 3 While Ω �� ∅ Do (the main loop)
(S3.1) (Node Selection) Choose a node [@k,(tk,yk,zk,sk)]

fromΩwith the largest upper bound tk and delete
it from Ω.

(S3.2) (Termination) If tk ≤ v∗ + ε, then y∗ is an
ε-optimal solution to Problem (8); stop.

(S3.3) (Partition) Choose i∗ � arg max
i�1,...,r{s

k
i − (zki )2}. Set

wi∗ � lki∗ +uki∗
2 ,

Γk wi∗( ) � si∗ , zi∗( ) si∗ > lki∗ + wi∗
( )

zi∗ − lki∗wi∗

si∗ > wi∗ + uki∗
( )

zi∗ − wi∗uki∗

⃒⃒⃒
⃒⃒

{ }
.

If (ski∗ , zki∗ ) ∈ Γk(wi∗ ), then set the branching value
βi∗ � wi∗ ; else, set βi∗ � zki∗ . Partition @k into two
subrectangles @k1 and @k2 along the edge [lki∗ ,uki∗ ] at
point βi∗ .

(S3.4) For j � 1, 2, solve Problem (15) over @kj to ob-
tain an optimal solution (tkj , ykj , zkj , skj); setΩ � Ω∪
{[@kj , (tkj , ykj , zkj , skj)]}.

(S3.5) (Restart SCO) Set ŷ � argmax{ f2(yk1), f2(yk2)}.
If f2(ŷ) > v∗, then find a KKT point ȳk of Problem (8)
by running SCO(ŷ, ε), and update solution y∗ �
argmax{ f2(ŷ), f2(ȳk)} and lower bound v∗ � f2(y∗).

(S3.6) (Node deletion) Delete from Ω all the nodes
[@j, (tj, yj, zj, sj)] with tj ≤ v∗ + ε. Set k � k + 1.

End while.
We list threemain differences between the SCOBB

and other existing global algorithms for LCQP in the
literature (Burer and Vandenbussche 2008, 2009).

i. In Step 1, we apply the SCO algorithm from
different feasible points of the lifted Problem (14) as
starting points to find a good feasible solution for
Problem (8).

ii. In Step (S3.5), we restart SCO to find a better
feasible solution if the objective function value at the
feasible point derived from the solution of the relaxation
problem is greater than the current lower bound.
iii. In Step (S3.3), we cut off the optimal solution of

the relaxation problem after each iteration to improve
the upper bound (see an illustration in Figure 1 of Luo
et al. 2019a).
We next present several technical results for the

sequences {sk} and {zk} generated by Algorithm 2.
Recall that (yk, tk, sk, zk) is the optimal solution of
Problem (15) over @k. From the proof of Theorem 3,
we immediately have the following results.

Lemma 6. For each k, ski − (zki )2 ≤ 1
4 (uki − lki )2, i � 1, . . . , r.

Lemma 7. At the kth iteration, ifmaxi�1,...,r{ski − (zki )2} ≤ ε2

r ,
then Algorithm 2 stops and both y∗ and yk are global
ε-approximate solutions to Problem (8).

We now establish the convergence of Algorithm 2
based on Lemmas 6 and 7.

Theorem 5. Algorithm 2 can find a global ε-approximate
solution to Problem (8) by solving at most

∏r
i�1	 r̅

√ (ziu−zil)
2ε �

relaxed Subproblem (15).

4.3. The SCO–Nonlinear SDR Algorithm
The complexity of SCOBB grows exponentially in
terms of r (the column number of thematrixQ), which
indicates that SCOBB may not be efficient for in-
stances of (WCLO2) with large r. To remedy this, in
this subsection, we propose amixed algorithm (called
SCO-NLSDR) for (WCLO2)with large r by combining
the SCO algorithm with the nonlinear SDR (NLSDR)
from Peng and Tao (2015) and the disjunctive cut
technique from Saxena et al. (2010). Specifically, we
strengthen the NLSDR from Peng and Tao (2015) to
obtain a tighter upper bound by adding the series of
disjunctive cuts based on the information from the
solution of the current NLSDR.
We denote by Tr(·) the trace of a matrix, and by 6m

the spaceofm ×m real symmetricmatrices. ForB ∈ 6m,
the notation B � 0 means that the matrix B is posi-
tive semidefinite. Let us first describe the NLSDR for
(WCLO2)proposed byPeng and Tao (2015) as follows:

max
y,Y( )∈= b

T
0y +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
bT0y
( )2 +Tr QQT − b0bT0

( )
Y

( )√
, (18)

where

= � y,Y
( ) ∈ Rm × 6m ATy ≤ c, y ≤ 0, ATY ≥ cyT,

Y − yyT � 0, Y ≥ 0

⃒⃒⃒
⃒

{ }
.

Aspointedout byPeng and Tao (2015), theNLSDR (18)
can provide a tight upper bound for the optimal value
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of (WCLO2). A bisection search algorithm (BSA) was
proposed by Peng and Tao (2015) for finding the
optimal solution for Problem (18) in polynomial time.
Next, we present a strengthenedNLSDR for (WCLO2)
by adding disjunctive cuts to theNLSDR (18). For this,
we describe the approach for generating disjunctive
cuts by Saxena et al. (2010). Let (ŷ, Ŷ) be the solu-
tion to the NLSDR (18) which we want to cut off.
Let λ1 ≥ · · · ≥ λq > λq+1 � · · · � λn � 0 be eigenvalues
of the matrix Ŷ − ŷŷT, and let p1, . . . , pn be the corre-
sponding set of orthonormal eigenvectors. Let p � pk,
k ∈ {1, . . . , q}. We define

ηl p
( ) � min

y,Y( )∈= p
Ty, ηu p

( ) � max
y,Y( )∈= p

Ty. (19)

Let θ � pTŷ. As pointed out by Saxena et al. (2010), the
following disjunction can be derived by splitting the
range [ηl(p), ηu(p)] of the function pTy over = into two
intervals, [ηl(p), θ] and [θ, ηu(p)], and constructing a
secant approximation of the function −(pTy)2 in each
of the intervals, respectively:

ηl p
( ) ≤ pTy ≤ θ

− pTy
( )

ηl p
( ) + θ

( ) + θηl p
( ) ≤ −Tr ppTY

( )
[ ]

⋁ θ ≤ pTy ≤ ηu p
( )

− pTy
( )

ηu p
( ) + θ

( ) + θηu p
( ) ≤ −Tr ppTY

( )
[ ]

.

The aforementioned disjunction can be used to derive
the following disjunctive cuts by using the apparatus
of cut-generation linear program (CGLP) (see Theo-
remA.1 in the appendix of Luo et al. 2019b for CGLP):

αT
k y + Tr UkY( ) ≥ βk, k � 1, . . . , q. (20)

Adding disjunctive cuts (20) to the NLSDR (18) yields
an enhanced NLSDR for (WCLO2):

max bT0y +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
bT0y
( )2 +Tr QQT − b0bT0

( )
Y

( )√
,

s.t. αT
k y + Tr UkY( ) ≥ βk, k � 1, . . . , q,

y,Y
( ) ∈ =.

(21)

We now present the following hybrid algorithm for
(WCLO2) with large r based on the NLSDR, disjunc-
tive cut technique, and the SCO approach.

Algorithm 3 (The SCO-NLSDR Algorithm)
Input: Q, c,A, b0, and stopping criteria ε > 0.
Output: lower bound v∗ and upper bound v̂.
Step 1 Use the BSA algorithm of Peng and Tao (2015)
to solve Problem (18) to obtain an optimal solution
(ŷ, Ŷ) and optimal value v̂.

Step 2 Use the CGLP apparatus to generate dis-
junctive cuts from the eigenvectors of the matrix

Ẑ � Ŷ − ŷŷT with positive eigenvalues to cut off the
solution (ŷ, Ŷ).

Step 3 If a violated cut was generated, then add
generated disjunctive cuts to Problem (18) and go to
Step 1. Else, go to Step 4.

Step 4 Run SCO(ŷ, ε) to obtain a KKT point ȳ for
Problem (8); set v∗ � f2(ȳ); stop and output v∗ and v̂
as thefinal lowerboundandupperbound, respectively.

Numerically, the loop of the algorithm is repeated
until a time limit of 60minutes is reached or the code is
unable to find any violated cut. In the main loop, we
generate a disjunctive cut from each positive eigen-
value of Ẑ by using CGLP to strengthen the NLSDR to
obtain a tighter upper bound of Problem (8). At Step 4,
we apply the SCO algorithm from the solution of
strengthened NLSDR as a starting point to find a
better feasible solution for Problem (8). We report our
numerical results for Algorithm 3 in Tables 1 and 2 of
Section 3 in the online supplement to this paper. As
we can see later from the tables, the solutions derived
by SCO are optimal for most of the test problems. We
also observe that the gap between the lower and
upper bounds derived from Algorithm 3 is much
smaller than that from the NLSDR (18).

5. A Global Algorithm for (WCLO∞)
In this section, we propose a finite B&B algorithm for
(WCLO∞) to globally solve the underlying problem
via combining LO relaxation and complementarity
branching technique.
We start by reformulating Problem (3) into the

following lifted problem:

max z‖ ‖1 + bT0y : y ∈ #, QTy � z
{ }

. (22)
For any z ∈ Rr, let us define a vector μ ∈ R2r whose
component is

μi � max zi, 0{ }, μi+r � −min zi, 0{ }, i � 1, . . . , r.

(23)
Clearly, we have

zi � μi − μi+r, |zi| � μi + μi+r, μiμi+r � 0,
i � 1, . . . , r, μ ≥ 0.

Table 1. Notations

Opt.val The average optimal value obtained by the algorithm
for five test instances

Time The average CPU time of the algorithm (unit: seconds)
for five test instances

Iter The average number of iterations in themain loop of the
algorithm for five test problems

ValSCO The average objective value at the solution computed by
SCO in SCOBB for five test problems

Luo et al.: Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties
INFORMS Journal on Computing, 2021, vol. 33, no. 1, pp. 180–197, © 2020 INFORMS 187



Then, Problem (22) can be further reformulated as the
following LOproblemwith complementarity constraints:

max
y,μ( )∈Rm+2r

eTμ + bT0y

s.t. QTy � Pμ, y ∈ #, 0 ≤ μ ≤ μ̂,

μiμi+r � 0, i � 1, . . . , r,

(24)

where e ∈ R2r is thevectorof all ones,P�(Ir,−Ir)∈Rr×2r, Ir
is the identity matrix of order r, and μ̂ ∈ R2r is the up-
per bound of μ defined by

μ̂i � max ziu, 0
{ }

, μ̂i+r � −min zil, 0
{ }

, i � 1, . . . , r,

where zl and zu are given in (10). By dropping the
complementarity constraint in (24), we can obtain the
following LO relaxation:

max
y,μ( )∈* eTμ + bT0y, (25)

where
* � {(y, μ) ∈ Rm+2r : QTy � Pμ, y ∈ #, 0 ≤ μ ≤ μ̂}.

Based on relaxation (25) and complementarity branch-
ing technique, we propose a finite B&B algorithm
(called FBB) for Problem (3) as follows.

Algorithm 4 (The FBB Algorithm)
Input: Q, c,A, b0, and stopping criteria ε > 0.
Step 0 (Initialization) Solve the following problem to

get the optimal solution (ȳ, z̄):
max eTz + bT0y : y ∈ #, QTy � z

{ }
.

Compute μ̄ by (23). Set γ � eTμ̄ + bT0 ȳ.
Step 1 Solve Problem (25) to obtain an optimal so-

lution (y0, μ0) and an initial upper bound v0. Set
k � 0, Rk � [0, μ̂], 5 � {[Rk, (yk, μk, vk)]}.

Step 2Choose i∗ �argmaxi�1,...,r{μk
iμ

k
i+r}. PartitionRk into

Rk1 and Rk2 via the index i
∗ by the branching procedure:

Rk1 � μ ∈ Rk : μi∗ � 0
{ }

,

Rk2 � μ ∈ Rk : μi∗+r � 0
{ }

.

Step 3 Solve problem (Pkj ) to obtain an optimal so-
lution (ykj , μkj ) and optimal value vkj :

Pkj

( )
max eTμ + bT0y : y, μ

( ) ∈ *, μ ∈ Rkj

{ }
, j � 1, 2.

Set 5 �5∪ {[Rk1 , (yk1 , μk1 ,vk1)], [Rk2 , (yk2 , μk2 ,vk2)]}. For
j � 1, 2, if (ykj , μkj) is feasible to Problem (24) and
vkj > γ, then update the lower bound γ � vkj and
(y∗,μ∗) � (ykj ,μkj).

Step 4 Delete from 5 all the nodes [Rj, (yj, μj, vj)]
with vj ≤ γ + ε. Choose a node [Rk, (yk, μk, vk)] from
5 with the largest upper bound vk and delete it
from 5.

Step 5 If 5 � ∅, then stop; (y∗, μ∗) is an ε-optimal so-
lution. Else, set k � k + 1; go to Step 2.

We then have the finite convergence of the algo-
rithm due to the complementarity branching rule
used in the algorithm.

Theorem 6. Algorithm 4 terminates after finitely
many iterations and obtains an ε-optimal solution of
Problem (3).

6. Some Application Examples
In this section, we describe a couple of application
examples of the WCLO model.

6.1. Estimating the Worst-Case Systemic Risk
We first describe an example of the WCLO model
for estimating the worst-case systemic risk in fi-
nancial systems in Peng and Tao (2015). Consider an

Table 2. Comparison of the Average Performance of SCOBB, BARON,MIPR, andNLSDP forWCSRwith p � 2

Size SCOBB BARON MIPR NLSDP

n r Time Opt.val Iter ValSCO Time Opt.val Time Opt.val Time LB UB T

20 5 1.8 4.5363 114.6 4.5363* 140.2 4.6117 (4) 0.9 4.5363 1.9 4.5363 4.5363 5
30 5 2.8 6.0828 154.8 6.0828* 356.2 6.2683 (3) 0.8 6.0828 3.4 6.0828 6.0828 5
50 5 5.7 9.3514 189.0 9.3514* 177.5 13.1258 (1) 3.7 9.3514 29.0 9.3505 9.3514 4
80 5 9.7 12.4629 143.6 12.4629* 394.0 12.4629 14.5 12.4629 62.8 12.4629 12.4629 5

100 5 11.6 17.6994 103.4 17.6994* 307.3 18.9620 (1) 21.0 17.6994 211.5 17.6994 17.6994 5
20 10 27.1 3.4492 1922.6 3.4492* − − 3.6 3.7892 (4) 2.9 3.4461 3.4493 4
30 10 21.4 5.6409 1403.4 5.6409* − − 18.4 5.6409 2.6 5.6409 5.6409 5
50 10 53.1 8.5300 2105.0 8.5300* − − 197.9 8.5300 21.0 8.5300 8.5300 5
80 10 70.9 12.8140 1482.0 12.8140* − − 317.4 13.0233 (3) 195.9 12.8137 12.8140 4

100 10 73.3 16.4826 996.2 16.4826* − − 370.2 17.7078 (2) 206.2 16.4826 16.4826 5

Notes. The number in parentheses stands for the number of instances for which BARON or MIPR can verify the global
optimality of the solution within 600 seconds. Time and Opt.val for BARON or MIPR denote the average CPU time and
optimal value for the instances that are globally solved by BARON or MIPR in five instances, respectively. The sign “−”
stands for the situations where the method failed to find the global solution within 600 seconds in all cases.
*Global optimal solutions are found by SCO for all five instances.
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interbank network consisting of n banks. Let L ∈
�n×n be the liability matrix in the network where the
element Lij represents the liability of bank i to bank j.
Naturally, we can assume that Lij ≥ 0 for i �� j and
Lii � 0. Let b̂ ≥ 0 be the asset vector where b̂i repre-
sents the asset of bank i. The systemic loss of a fi-
nancial system can be found via solving the fol-
lowing linear optimization problem (Eisenberg and
Noe 2001):

min
x∈Rn

∑n
i�1

1 − xi( )

s.t.
∑n
j�1

Lij

( )
xi −

∑n
j�1

Ljixj ≤ b̂i, i � 1, . . . ,n,

0 ≤ xi ≤ 1, i � 1, . . . , n.

(26)

Here, xi ∈ [0, 1] (i � 1, . . . ,n) represents the percentage
of the payment from bank i proportional to its total
liability, and 1 − xi denotes the percentage of the total
liability bank i by default.

Note that the asset of a financial institution is usu-
ally subject to market shocks (i.e., there exist un-
certainties in the asset of a bank). To account for the
uncertain asset, Peng and Tao (2015) introduced the
worst-case systemic risk (WCSR) problem, defined
as follows:

max
u∈@p

min
x∈^1 u( )

eT e − x( ), (27)

where e ∈ Rn is the vector of all ones, @p :� {u ∈ Rr :
‖u‖p ≤ 1} with p � 1, 2,∞ denotes the uncertainty
set, and

^1 u( ) :� x ∈Rn : diag Le( )−LT
( )

x≤Qu+ b̂, 0≤ x≤ e
{ }

,

withQ ∈ Rn×r for some r ≤ n. Here, diag(d)denotes the
diagonal matrix whose diagonal is d for a vector
d ∈ Rn.

In order to formulate (27) into the form of (WCLOp),
we consider the following problem by removing the
nonnegativity constraint in the inner problem of (27)
(Khabazian and Peng 2019):

max
u∈@p

min
x∈^2 u( )

eT e − x( ), (28)

where

^2 u( ) � x ∈ Rn : diag Le( ) − LT
( )

x ≤ Qu + b̂, x ≤ e
{ }

.

Under the assumption that ^1(u) �� ∅ for any u ∈ @p,
one can show the following result.

Proposition 10. Problems (27) and (28) have the same
optimal value and optimal solutions.

Let z � e − x; Problem (28) can be written as

max
u∈@p

min
z∈^ u( )

eTz, (29)

where

^ u( ) � z ∈ Rn : Az ≤ Qu + b0, z ≥ 0{ },
withA � LT − diag(Le) and b0 � Ae + b̂. It is easy to see
that Problem (29) reduces to a special case of Prob-
lem (2), where the associated set # is defined by # �
{y ∈ Rm|ATy ≤ e, y ≤ 0}. Note that ATe � 0, and hence,
the rank of A is at most n − 1. Because AT(−e) � 0 < e,
the interior of # is nonempty and unbounded. There-
fore, the global methods developed in the previous
sections cannot be applied directly to solve Problem (29)
with p � 2,∞. To overcome this difficulty, we now
construct the following auxiliary problem:

max
u∈@p

min
z,v( )∈^0 u( )

eTz + M̄v, (30)

where M̄ > 0 is sufficiently large, and

^0 u( ) � z,v( ) ∈Rn+1 :Az−ve≤Qu+b0, z≥ 0, v≥ 0
{ }

.

We remark that, because^1(u) is nonempty, it follows
that ^2(u) and hence ^(u) are also nonempty, which
further implies that ^0(u) is also nonempty. Thus,
Problem (30) is feasible and well-defined. The fol-
lowing result shows that Problems (30) and (29) are
equivalent.

Proposition 11. For a given u ∈ @p, if (z∗(u), v∗(u)) is the
optimal solution to the inner problem of (30), then v∗(u) � 0
and z∗(u) is the optimal solution to the inner problem of (29).
Moreover, Problems (30) and (29) have the same optimal value.

Proposition 11 indicates that the global optimal
solution of Problem (29) can be obtained via solving
the auxiliary Problem (30) when p � 2,∞. Moreover,
from Propositions 1 and 4, Problem (30) with p � 2,∞
is equivalent to the following problem:

max QTy
⃦⃦ ⃦⃦

q + bT0y (31)
s.t. y ∈ #̄ � y ∈ Rn | ATy ≤ e, eTy ≥ −M̄, y ≤ 0

{ }
,

where A�LT−diag(Le), b0 � Ae + b̂, q � 2 if p � 2 and
q � 1 if p � ∞, and M̄>0 is sufficiently large. It should
be pointed out that the set #̄ is bounded and has a
nonempty interior. Thus, Problem (31) can be solved
by global algorithms developed in the previous sec-
tions. We will report numerical results for the WCSR
Problem (27) in Section 7.1.
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6.2. Solving the Two-Stage Adjustable
Robust Optimization

Asmentioned in the introduction, theWCLO appears
as a subproblem in the two-stage adjustable robust
optimization (TSARO) that deals with the situation in
which decision makers need to adjust their decisions
after the uncertainty is revealed. The TSARO has
recently become a popular topic in the optimization
community due to its difficulty and wide applica-
tions (Ben-Tal et al. 2004; Atamturk and Zhang 2007;
Bertsimas and Goyal 2010, 2012; Bertsimas et al. 2013;
Zeng and Zhao 2013; Gabrel et al. 2014; Shu and Song
2014). In this subsection, we study how to apply the
proposed global algorithms for WCLO to solve the
TSARO problem of the following form:

TSAROp
( )

min
z∈]

dTz +max
b∈8p

min
x∈- z,b( )

cTx
{ }

,

where] :�{z∈Rl :Bz≤ρ, z≥0},8p :�{b�Qu+b0 :‖u‖p≤
1, u∈Rr} with 1 ≤ p ≤ ∞ denoting the uncertainty set
based on the �p-norm, -(z,b) :� {x ∈ Rn : Ax+Dz ≤ b,
x ≥ 0}. Here, B ∈ Rm1×l, ρ ∈ Rm1 , Q ∈ Rm×r for some
r ≤ m, b0 ∈ Rm, A ∈ Rm×n, D ∈ Rm×l. We assume that ]
is bounded and -(z, b) is nonempty for any (z, b). It is
worth mentioning that the recourse matrix A of the
recoursedecision x is independent of the uncertainty u.
This is referred to as fixed recourse in the stochastic
programming andmakes the problem relatively easier
than those with nonfixed recourse. Several cutting
plane–based methods have been developed for solv-
ing the TSARO problem with a general polyhedral
uncertainty set (Jiang et al. 2012, Bertsimas et al. 2013,
Gabrel et al. 2014). Zeng and Zhao (2013) proposed a
column-and-constraint generation (C&CG) method
to solve it.

We next discuss how to combine our algorithms for
WCLO with the cutting plane algorithm to develop
new global solvers for (TSAROp) with p � 2,∞. For
such a purpose, we first reformulate (TSAROp) with
p ∈ (1,∞] as a bilevel optimization problem whose
inner subproblem involves the lq-norm maximization.
From Propositions 1 and 4, we can obtain the fol-
lowing result.

Proposition 12. (TSAROp) with p ∈ (1,∞] has the same
optimal value with the following two-level optimization problem:

min
z∈]

dTz +max
y∈#

QTy
⃦⃦ ⃦⃦

q + b0 −Dz( )Ty
{ }{ }

, (32)

where q > 1, 1p + 1
q � 1 if p ∈ (1,∞) and q � 1 if p � ∞, and

the set # is given in (2).

It is worth mentioning that in Problem (32), there is
no joint constraint on the here-and-now decision z
and the optimal wait-and-see decision y∗ that solves
the inner maximization problem. Such a feature leads

Problem (32) to a special case of the general bilevel
optimizationproblem that is, in general, harder to solve.
In the sequence, we propose two cutting plane algo-

rithms for (TSAROp)with p � 2,∞. To start, we assume
that both Assumptions 1 and 2 hold. Assumption 1
ensures the existence of optimal solutions of the inner
problem of (32):

ψq z( ) :� max
y∈#

QTy
⃦⃦ ⃦⃦

q + b0 −Dz( )Ty
{ }

. (33)

It is clear thatψq(z) < ∞due toAssumption 1.We then
have the following.

Proposition 13. Letψq(z) be defined by (33), thenψq(z) is a
piecewise linear convex function on Rl. Let yz be a globally
optimal solution of Problem (33); then, −DTyz is a sub-
gradient of ψq(z) at z.
By Propositions 12 and 13, we see that (TSAROp)

with p ∈ (1,∞] can be reformulated equivalently as
the following convex problem:

min
z∈]

dTz + ψq z( ){ }
, (34)

where q > 1, 1
p + 1

q � 1 if p ∈ (1,∞), and q � 1 if p � ∞.
Based on the reformulated Problem (34), by fol-

lowing a similar idea of Kelley (1960), we present the
following cutting plane (CP) algorithm in a bilevel
optimization framework for solving Problem (32).

Algorithm 5 (The CP Algorithm)
Input: d, c,A,D,Q, b0,B, ρ, and stopping criteria ε > 0.
Output: an ε-optimal solution zk.
Step 0 (Initialization)
(i) Solve the LO problem maxz∈] dTz to get the opti-

mal solution z0.
(ii) Solve Problem (33) with z � z0 to obtain the op-

timal solution y1 and the optimal value ψq(z0). Set
the upper bound v0 � dTz0 + ψq(z0), and k � 1.

Step 1 Solve the following master problem:

min
z,η

dTz + η

s.t. η ≥ QTyi
⃦⃦ ⃦⃦

q + b0 −Dz( )Tyi, i � 1, . . . , k,

z ∈ ].

(35)

Derive an optimal solution (zk, ηk) and the optimal
value fk � dTzk + ηk.

Step 2 Solve Subproblem (33) with z � zk to obtain the
optimal solution yk+1 and the optimal value ψq(zk).
Update theupper bound vk �min{vk−1,dTzk+ψq(zk)}.

Step 3 If vk − fk ≤ ε, then zk is an ε-optimal solution
to Problem (32); stop. Otherwise, set k � k + 1; go
to Step 1.

It should be pointed out that at Steps 0 (ii) and 2,
Subproblem (33) with z � zk can be solved by Algo-
rithm 2 when q � 2 and by Algorithm 4 when q � 1.
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Note that dTzk + ψq(zk) provides an upper bound and
dTzk + ηk provides a lower bound to the optimal value
of Problem (34). Note that because {zk} ⊆ ] and ] is
bounded, there exists at least one accumulation point
for the sequence {zk} generated by Algorithm 5.

We next present a technical result for the sequence
{(zk, ηk)} generated byAlgorithm 5. Let5 :� {(z, η) : η≥
ψq(z), z ∈]}, and let 3k denote the set of feasible so-
lutions of Problem (35). We have the following.

Lemma 8. For all k, 5 ⊆ 3k.

Based on Lemma 8, we can establish the global
convergence of Algorithm 5 with ε � 0.

Theorem 7. Let {zk} be an infinite sequence generated
by Algorithm 5 with ε � 0. Then, any accumulation point
of {zk} is an optimal solution of Problem (32).

Next, by following a similar procedure as Zeng
and Zhao (2013), we present an improved cutting
plane (ICP)algorithmfor solvingProblem(32) as follows.

Algorithm 6 (The ICP Algorithm)
The algorithm is identical to Algorithm 5 except that

Step 1 is replaced by the following step:
Step 1′ If q ∈ (1,∞), compute ukq � μ(yk; q) by (1). If
q � 1, compute ukq by (4) with y∗ � yk. Solve the
following master problem:

min
z,η,x1,...,xk

dTz + η

s.t. η ≥ cTxi, i � 1, . . . , k,

Axi +Dz ≤ Quiq + b0, i � 1, . . . , k,

xi ≥ 0, i � 1, . . . , k,
z ∈ ].

(36)

Derive an optimal solution (zk, ηk, x̄1, . . . , x̄k) and the
optimal value fk � dTzk + ηk.

Compared with Algorithm 5, Algorithm 6 solves a
master problem with a polynomial number of vari-
ables and constraints in each iteration. However, this
master problem provides a tighter lower bound to
Problem (32) than one in Algorithm 5 (see Proposi-
tion 14). Furthermore, compared with the C&CG
algorithm in Zeng and Zhao (2013), Algorithm 6 in its
Step 2 solves an �q-norm maximization subproblem,
whereas the C&CG algorithm solves a subproblem
that is a 0–1 mixed-integer program with a large
number of variables and constraints, which generally
requires more computational time. As we see later,
Algorithm 6 is computationally more effective than
both Algorithm 5 and the C&CG algorithm.

We next present a technical result for the sequence
{(zk, ηk)} generated by Algorithm 6.

Lemma 9. Let the sequence {(zk, ηk)} be generated by
Algorithm 6, and let f ∗p be the optimal value of (TSAROp).
Then, (zk, ηk) ∈ 3k and f ∗p ≥ fk � dTzk + ηk for all k.

From Lemma 9, we see that the optimal solution of
Problem (36) is also feasible to Problem (35). We
immediately have the following result.

Proposition 14. Let fk and f ′k denote the optimal value of
Problems (36) and (35), respectively. Let f ∗p be the optimal
value of Problem (32). Then, f ∗p ≥ fk ≥ f ′k .
Proposition 14 indicates that Problem (36) provides

a tighter lower bound to Problem (32) than Prob-
lem (35). This result indicates that Algorithm 6 re-
quires fewer iterations than Algorithm 5.
Using Lemma 9, we now establish the global con-

vergence of Algorithm 6 with ε � 0.

Theorem 8. Let {zk} be an infinite sequence generated by
Algorithm 6 with ε � 0. Then, any accumulation point
of {zk} is an optimal solution of Problem (32).

6.3. Application to Two-Stage Robust Location-
Transportation Problem

In this subsection, we present an application of TSARO
(i.e., the two-stage robust location-transportation prob-
lem in Gabrel et al. 2014 and Zeng and Zhao 2013).
Let us consider the following location-transportation

problem with m potential facilities and n customers.
Let ξi be the fixed cost of the building facilities at site i
and ζi be the unit capacity cost for i � 1, . . . ,m. Let dj be
the demand from customer j for j � 1, . . . ,n, and let the
unit transportation cost from facility i to customer j
be cij. Let the maximal allowable capacity of the facility
at site i be ηi and assume

∑
i ηi ≥ ∑

j dj to ensure feasi-
bility of the problem. Let y ∈ {0, 1}m be the facility
location variable, z ∈ Rm+ be the capacity variable, and
X � (xij) ∈ Rm×n+ be the transportation variable. Then,
the location-transportation problem can be posted as
the following binary linear optimization problem:

min
y,z,X

ξTy + ζTz + Tr CXT( )
s.t. z ≤ diag η

( )
y, Xē ≤ z, XTê ≥ d,

y ∈ 0, 1{ }m, z ∈ Rm
+ , X ∈ Rm×n

+ ,

(37)

where ξ � (ξ1, . . . , ξm)T, ζ � (ζ1, . . . , ζn)T, C � (cij)m×n,
d� (d1, . . . ,dn)T, η � (η1, . . . , ηm)T, and ē ∈ Rn and ê ∈ Rm

are the column vector of all ones.
In practice, however, the demand is unknown be-

fore any facility is built and the capacity is installed.
To account for the uncertain demand, Gabrel et al.
(2014) and Zeng and Zhao (2013) proposed the fol-
lowing worst-case robust location-transportation
(WCRLT) problem:

min
y,z

ξTy + ζTz +max
d∈$p

min
X∈6 d,z( )

Tr CXT( ){ }
s.t. z ≤ diag η

( )
y, y ∈ 0, 1{ }m, z ∈ Rm

+ ,

(38)
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where $p :� {d � Qu + d0 : ‖u‖p ≤ 1, u ∈ Rr} with p �
1, 2,∞ denotes the uncertainty set based on the
�p-norm, 6(d, z) :� {X ∈ Rm×n+ : Xē ≤ z, XTê ≥ d}. Here,
Q ∈ Rn×r for some r ≤ n, d0 ∈ Rn. Gabrel et al. (2014)
and Zeng and Zhao (2013) dealt with the polyhe-
dral uncertainty set$ :�{d�Qu+d0 : eTu≤Γ, u∈ [0,1]n},
where Γ > 0 is an integer and Q is an n × n diagonal
matrix. It is easy to see that Problem (38) is a special
case of TSARO.

We denote byA the coefficient matrix of constraints
Xē ≤ z and XTê ≥ d. Note that the rank of A is at most
m + n − 1, and thus, the associated set# is unbounded
for Problem (38). Thus, the global methods developed
in Section 6.2 cannot be used directly to solve Prob-
lem (38) with p � 2,∞. To overcome this difficulty,
using the same technique as in constructing auxiliary
Problem (30), we can construct an auxiliary problem
that is equivalent to Problem (38). Then, the constructed
auxiliary problem can be solved by global algorithms
developed in Section 6.2. We will report numerical
results for the WCRLT Problem (38) in Section 7.2.

7. Numerical Experiments
In this section, we present computational results of
the SCOBB algorithm (Algorithm 2) for (WCLO2) and
the results of the FBB algorithm (Algorithm 4) for
(WCLO∞). We also give numerical results of the CP
and ICP algorithms (Algorithms 5 and 6) for (TSAROp)
with p � 2,∞.1 The algorithms are coded in Matlab
R2013b and run on a personal computer (PC; 3.33
GHz, 8 GB random access memory (RAM)). All of the
linear and convex quadratic subproblems in the al-
gorithms are solved by the QP solver in CPLEX 12.6
with Matlab interface (IBM ILOG CPLEX 2013).

In our numerical experiments, the stopping pa-
rameter ε is set as ε � 10−5. We use the notations
described in Table 1 in our discussion of the com-
putational results.

7.1. Numerical Results of the SCOBB and
FBB Algorithms

In this subsection, we test the SCOBB algorithm and
the FBB algorithm on theWCSR Problem (27) with both
synthetic data and data from the financial networks
reported in the literature. Because the complexity of the
SCOBB algorithm grows exponentially in terms of the
column number of the matrix Q, we restrict instances
with a small number of columns of Q (say, r ≤ 10).

Note that the WCSR Problem (27) is equivalent to
Problem (31) in the sense that they have the same
optimal value due to Propositions 10 and 11. We
apply the SCOBB and FBB to solve Problem (31) with

q � 2 and q � 1. The nonlinear SDR (18) associated
with (27) with p � 2 becomes the following:

max bT0y +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
bT0y
( )2 +Tr QQT − b0bT0

( )
Y

( )√
s.t. ATy ≤ e, eTy ≥ −M̄, y ≤ 0,

ATY ≥ eyT, eTY ≤ −M̄y, Y ≥ 0,

Y − yyT � 0,

(39)

where A � LT − diag(Le), b0 � Ae + b̂, and M̄ > 0 is
sufficiently large. In our test, the penalty parameter M̄
in (31) and (39) is set as 10. We also present an
example (see Example 1.1 in the online supplement)
showing that the nonlinear semidefinite programming
(NLSDP) Problem (39) may not necessarily find the
globally optimal solution of the WCSR Problem (27)
with p � 2.
We compare SCOBB with the NLSDP Problem (39)

and the global optimization package BARON (Sahinidis
1996) for small-scale random instances of the WCSR
Problem (27) with p � 2. In our experiments, the
NLSDP Problem (39) is solved by the BSA in poly-
nomial time in Peng and Tao (2015), and the SDP
subproblems in BSA are solved by the SDP solver
SDPT3 (Toh et al. 1999).
We also compare both SCOBB and FBB with the

MIPR (mixed-integer program reformulation) approach
proposed by Zeng and Zhao (2013) for the WCSR
Problem (27)with p � 2,∞, where theMIPR forWCSR
is given in Section 2 in the online supplement. In our
experiments, the 0–1 mixed-integer problem in MIPR
is solved by the mixed-integer QP solver in CPLEX
12.6. The parameter “TolXInteger” in solver, which
controls the precision of integer variables, is set as
default value 10−7. The penalty parameterM in the 0–1
mixed-integer problem is set as 105.

7.1.1. Numerical Results for Randomly Generated Test
Problems. In this test, the data (L,Q, b̂) in the WCSR
model (27) are randomly generated in the same way
as in Peng and Tao (2015). That is, the off-diagonal
entries of L are drawn from LN(0.03, 1) (i.e., lognormal
distributionwithmean 0.03 and standard deviation 1),
entries of Q are drawn from U(−3, 3) (i.e., uniformly
distributedwithin interval [−3, 3]), and entries of b̂ are
drawn from U(0.5, 5).
The average numerical results for five randomly

generated test problems of the same size are sum-
marized in Tables 2–7, where the following notations
are also used:
• “NLSDP” denotes the nonlinear SDP relaxa-

tion (39);
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• “LB” and “UB” denote the average lower and
upper bounds obtained by NLSDP for five test prob-
lems, respectively;

• “T” denotes the number of the instances for
which NLSDP can find the global solution.

In Table 2, we compare the average performance
of SCOBB, BARON, MIPR, and NLSDP for WCSR
with p � 2. The sign ∗ for SCOBB represents that
global optimal solutions are found by SCO for all five
instances. From Table 2, one can see that SCOBB is
able to find the globally optimal solution for all test
problems, whereas BARON can only find the glob-
ally optimal solution of 16 instances out of the 50 test
problems within 600 seconds. Both MIPR and NLSDP
can find global optimal solutions for numerous test
instances, but NLSDP fails to globally solve three
specific instances listed in Table 3. Moreover, BARON
usually requires more central processing unit (CPU)
time than SCOBB for the solved instances. Also, for
numerous test instances, BARON only reported the
best solution obtained within 600 seconds and failed
to verify the global optimality of the obtained so-
lution. We observe that SCOBB is more effective
than MIPR in terms of CPU time for all instances
with n > 50, r � 5 and n ≥ 50, r � 10. We also observe
that the CPU time of SCOBB grows rapidly in terms of
the column number r of matrix Q, whereas the CPU
time for BARON, MIPR, and NLSDP increases very
fast as the size n of the test problem grows. The nu-
merical results also show that SCO often obtains a
solution with good quality from the fact that the
computed solutions are global optimal solutions for
all instances with r � 5, 10.

Table 4 summarizes the average numerical results
of SCOBB for medium and large-scale instances of
WCSR with p � 2, where x∗ is the global optimal
solution found by the algorithm. As one can see from
Table 4, for all the test problems of WCSR with p � 2,
SCOBB can effectively find the globally optimal so-
lution within 2,700 seconds. It should also be pointed
out that the SCO algorithm can always find globally
optimal solutions for all instances with r � 5 and
r � 10.

In Table 5, we compare the average performance of
Algorithm 4 and MIPR for five random instances of

WCSR with p � ∞. We can see that Algorithm 4 can
find the global optimal solution for all test problems.
Moreover, Algorithm 4 outperformsMIPR in terms of
the CPU time for the solved instances with r � 5, 10.
Table 6 summarizes the average numerical results

of Algorithm 4 for medium and large-scale instances
of WCSR with p � ∞, where x∗ is the global optimal
solution found by the algorithm. From Table 6, we see
that Algorithm 4 can effectively find the globally
optimal solution for all test instances of WCSR with
p � ∞ within 400 seconds.
For convenience, we denote as Algorithm A (Algo-

rithmB) themethodwhere theoptimalvalueof (WCLO1)
is derived by solving the 2r linear programs in (5)
according to Proposition 6 (solving a linear program
(6)). Table 7 summarizes the average numerical re-
sults of Algorithms A and B for medium and large-
scale instances of WCSR with p � 1. We observe that
Algorithm A is more effective than Algorithm B in
terms of CPU time for medium and large-scale
problems. This is because, compared with linear
program (5), which has n +m variables and con-
straints, linear program (6) has 2(r(m + n)) variables
and constraints and hence is much slower to solve.

7.1.2. Numerical Results for Test Problems with Partial
Real Data. Capponi et al. (2016) considered the sys-
tem consisting of the banking sectors in eight Euro-
pean countries for seven years, starting from 2008 and
ending in 2014. These countries are well representa-
tive of interbank activities in the European market,
as their liabilities account for 80% of the total liabil-
ities of the European banking sector. Banks’ consol-
idated foreign claims data from the BIS (Bank for
International Settlements) Quarterly Review are sum-
marized in Table 8 (also see Table 1 in Capponi
et al. 2016).
In this test, the data L in the WCSR model (27) are

from the interbank liabilitymatrix in Table 8, whereas

Table 3. Numerical Results of SCOBB andNLSDP for Three
Specific Instances of WCSR with p � 2

Instance SCOBB NLSDP

ID n r Time Opt.val Iter Time LB UB

11 50 5 4.2 9.815921 142 66.7 9.811750 9.816183
26 20 10 75.9 2.089064 4913 7.8 2.073435 2.089810
45 80 10 113.0 12.446227 2425 466.2 12.444812 12.446284

Table 4. Average Numerical Results of SCOBB for WCSR
with p � 2

Size SCOBB

n r Time Opt.val Iter ValSCO 1
n
∑n

i�1 x∗i

200 5 116.6 27.526448 96.0 27.526448* 0.8624
300 5 154.4 38.731214 119.4 38.731214* 0.8709
400 5 237.3 44.957784 103.6 44.957784* 0.8876
500 5 402.7 53.499306 113.6 53.499306* 0.8930
200 10 654.6 28.473318 989.4 28.473318* 0.8576
300 10 1094.2 35.837753 1407.0 35.837753* 0.8805
400 10 1778.5 47.939705 1419.8 47.939705* 0.8802
500 10 2460.5 54.067573 1155.6 54.067573* 0.8919

*Global optimal solutions are found by SCO for all five instances.
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the data (Q, b̂) are randomly generated. That is, entries
of Q are drawn from U(−15, 15), and entries of b̂
are drawn from U(50, 200). Table 9 summarizes the
average numerical results of SCOBB, Algorithm 4,
and Algorithm A for five random instances of WCSR
with partial real data for p � 1, 2,∞, where x∗ is the
global optimal solution found by the algorithm. From
Table 9, we see that for all test instances, SCOBB can
effectively find the global optimal solution within

about one second, whereas both Algorithm 4 and Al-
gorithmAcanfindtheglobaloptimal solution in less time.

7.2. Numerical Results of theCP and ICPAlgorithms
In this subsection, we present the numerical results
of the CP and ICP algorithms (Algorithms 5 and 6) for
the TSARO problem. We test Algorithms 5 and 6 on
theworst-case two-stage robust location-transportation
(WCTSRLT) Problem (38) with p � 2,∞.
To test the performance of Algorithms 5 and 6, we

randomly generate the parameters in the test prob-
lems in the same fashion as Gabrel et al. (2014) and
Zeng andZhao (2013). The entries of ξ are drawn from
U[100, 1,000], entries of ζ are drawn from U[10, 100],
entries of C are drawn from U[1, 1,000], entries of η
are drawn from U[200, 700], entries of Q are drawn
from U[−100, 100], and entries of d0 are drawn from
U[10, 500]. The relative gap is computed by using
the formula

gap :� UB−LB( )/max 1, |LB|{ },

where LB and UB denote the lower bound and upper
bound found by the algorithm.

Table 5. Average Numerical Results of Algorithm 4 and MIPR for WCSR with p � ∞
Size Algorithm 4 MIPR

n r Time Opt.val Iter 1
n
∑n

i�1 x∗i Time Opt.val

30 5 0.0574 7.564067 19.6 0.7479 0.6310 7.564067
50 5 0.0947 10.553717 21.6 0.7889 5.2957 10.553717
80 5 0.2449 13.701750 22.2 0.8287 24.7190 13.701750
100 5 0.3149 19.184807 18.0 0.8082 21.6093 19.184807
150 5 1.0158 25.409655 18.2 0.8306 188.0417 25.409655
30 10 0.8409 9.944164 253.0 0.6685 7.0121 9.944164
50 10 1.3870 12.602065 280.8 0.7480 101.3447 12.602065
80 10 4.9948 15.649310 423.8 0.8044 165.0869 16.307455 (2)
100 10 4.8578 19.725000 287.2 0.8027 245.3200 20.200269 (1)
150 10 16.1125 23.323694 408.2 0.8445 − −
Notes. The number in parentheses stands for the number of instances for which MIPR cannot verify the
global optimality of the solution within 600 seconds. Time and Opt.val for MIPR denote the average
CPU time and optimal value for the instances that are globally solved by MIPR in five instances.
The sign “−” denotes the situations where the method failed to find the global solution within
600 seconds in all cases.

Table 6. Average Numerical Results of Algorithm 4 for WCSR with p � ∞
Size Algorithm 4 Size Algorithm 4

n r Time Opt.val Iter 1
n
∑n

i�1 x∗i n r Time Opt.val Iter 1
n
∑n

i�1 x∗i

200 5 1.8 28.699626 21.8 0.8565 200 10 21.4 31.934539 277.4 0.8403
300 5 5.3 39.641063 21.0 0.8679 300 10 104.6 38.075087 499.0 0.8731
400 5 10.1 45.904413 19.2 0.8852 400 10 97.5 51.233594 214.2 0.8719
500 5 19.5 54.703325 19.4 0.8906 500 10 226.0 57.002375 254.8 0.8860

Table 7. Average Numerical Results of Algorithms A and
B for WCSR with p � 1

Size Algorithm A Algorithm B

n r Time Opt.val
1
n
∑n

i�1 x∗i Time Opt.val
1
n
∑n

i�1 x∗i

200 5 0.5 27.278095 0.8636 0.8 27.278095 0.8636
300 5 1.0 38.455844 0.8718 3.6 38.455844 0.8718
400 5 2.4 44.707294 0.8882 8.4 44.707294 0.8882
500 5 4.4 53.228812 0.8935 18.2 53.228812 0.8935
200 10 0.6 27.874673 0.8606 2.5 27.874673 0.8606
300 10 1.9 35.402705 0.8820 8.5 35.402705 0.8820
400 10 4.8 47.286932 0.8818 22.2 47.286932 0.8818
500 10 8.5 53.377167 0.8933 44.7 53.377167 0.8933
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We compare Algorithms 5 and 6 with the C&CG
algorithm in Zeng and Zhao (2013) for random
instances of Problem (38) with p � 2,∞. The C&CG
algorithm is coded in Matlab R2013b. The subprob-
lem in C&CG, which is a 0–1 mixed-integer program

(0–1MIP), is solved by theMIQP solver inCPLEX 12.6.
The penalty parameter M in 0-1MIP is set as 103.
In Tables 10 and 11, we summarize the average

numerical results of Algorithm 5, Algorithm 6, and
C&CG for five instances of Problem (38) with p � 2

Table 8. Banks’ Consolidated Foreign Claims (in USD Billion)

December 2009
United

Kingdom Germany France Spain Netherlands Ireland Belgium Portugal

United Kingdom 0.00 500.62 341.62 409.36 189.95 231.97 36.22 10.43
Germany 172.97 0.00 292.94 51.02 176.58 36.35 20.52 4.62
France 239.17 195.64 0.00 50.42 92.73 20.60 32.57 8.08
Spain 114.14 237.98 219.64 0.00 119.73 30.23 26.56 28.08
Netherlands 96.69 155.65 150.57 22.82 0.00 15.47 28.11 11.39
Ireland 187.51 183.76 60.33 15.66 30.82 0.00 64.50 21.52
Belgium 30.72 40.68 301.37 9.42 131.55 6.11 0.00 1.17
Portugal 24.26 47.38 44.74 86.08 12.41 5.43 3.14 0.00

June 2010
United

Kingdom Germany France Spain Netherlands Ireland Belgium Portugal

United Kingdom 0.00 462.07 327.72 386.37 135.37 208.97 43.14 7.72
Germany 172.18 0.00 255.00 39.08 149.82 32.11 20.93 3.93
France 257.11 196.84 0.00 26.26 80.84 18.11 29.70 8.21
Spain 110.85 181.65 162.44 0.00 72.67 25.34 18.75 23.09
Netherlands 141.39 148.62 126.38 20.66 0.00 12.45 23.14 11.11
Ireland 148.51 138.57 50.08 13.98 21.20 0.00 53.99 19.38
Belgium 29.15 35.14 253.13 5.67 108.68 5.32 0.00 0.39
Portugal 22.39 37.24 41.90 78.29 5.13 5.15 2.57 0.00

Source. BIS Quarterly Review, table 9B (Capponi et al. 2016).
Note. The ijth entry of each matrix denotes the interbank liabilities from the banking sector of
country i to the banking sector of country j.

Table 9. The Average Performance of SCOBB, Algorithm 4, and Algorithm A for WCSR
with Partial Real Data

SCOBB (p � 2) Algorithm 4 (p � ∞) Algorithm A (p � 1)
Opt.val Time 1

n
∑n

i�1 x∗i Opt.val Time 1
n
∑n

i�1 x∗i Opt.val Time 1
n
∑n

i�1 x∗i

December 2009 2.007399 0.881 0.749 2.141554 0.015 0.732 1.969954 0.004 0.754
June 2010 1.243539 1.023 0.845 1.419406 0.015 0.823 1.189241 0.005 0.851

Table 10. Average Numerical Results of Algorithm 5, Algorithm 6, and C&CG for
WCTSRLT with p � 2

Size Algorithm 6 Algorithm 5 C&CG

m n r Gap Time Iter Gap Time Iter Gap Time Iter

3 3 2 1.4e-007 (5) 1.987 3.2 2.6e-007 (5) 1.514 4.8 9.2e-009 (5) 0.753 3.2
5 5 3 3.1e-007 (5) 4.780 3.8 3.0e-007 (5) 4.536 7.4 3.5e-008 (5) 1.312 3.8
7 7 4 1.3e-007 (5) 13.933 4.6 1.3e-007 (5) 32.560 14.0 3.7e-008 (5) 4.399 4.6
10 10 5 1.5e-007 (5) 126.783 7.6 3.3e-008 (5) 395.347 42.8 1.8e-008 (5) 89.200 8.0
15 15 5 3.1e-004 (2) 601.532 8.4 2.5e-001 (0) 612.796 23.8 − − −
20 20 5 2.1e-003 (0) 786.662 4.0 1.6e-001 (0) 635.536 9.6 − − −
Notes. The number in parentheses stands for the number of instances for which the absolute gap
obtained by the algorithm is less than ε � 10−5 within 600 seconds. The sign “−” stands for the situations
where the first iteration of the algorithm is not terminated within 600 seconds in all cases.
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and p � ∞, respectively. From Tables 10 and 11, we
see that for all solved instances, Algorithm 6 is more
effective than bothAlgorithm 5 andC&CG in terms of
gap and CPU time. We also see that Algorithm 6 can
find the global optimal solution in a small number of
iterations and requires much fewer number of itera-
tions than Algorithm 5. In comparison with C&CG,
Algorithm 6 can find a global solution in less CPU time
for numerous instances of WCTSRLT with p � 2,∞.
This indicates that Algorithm 6 is promising for real
applications in transportation systems.

From Proposition 6, we observe that (TSARO1)
has the same optimal value with the following LO
problem:

min
z,ξ,x1,...,x2r

dTz + ξ

s.t. ξ ≥ cTxi, i � 1, . . . , 2r,

Axi +Dz ≤ Qei + b0, i � 1, . . . , 2r,

xi ≥ 0, i � 1, . . . , 2r,
z ∈ ].

(40)

We denote by Algorithm C the method where the
optimal value of (TSARO1) is derived by solving the
LO Problem (40). Table 12 summarizes the average
numerical results of Algorithm C for five random
instances of WCTSRLT with p � 1.

8. Conclusions
In this paper, we have considered theWCLO problem
with the uncertainty set 8p (1 ≤ p ≤ ∞) (denoted by
(WCLOp)) that arises from numerous important ap-
plications. We prove that (WCLOp) is strongly NP-
hard for p ∈ (1,∞), and (WCLO∞) is NP-hard. By
combining several simple optimization approaches
such as the SCO, the B&B framework, and initiali-
zation technique, we have developed the SCOBB al-
gorithm to find a global optimal solution for (WCLO2).
We have established the global convergence of the
SCOBB algorithm and determined its complexity.
Preliminary numerical experiments demonstrated that
the SCOBB algorithm can effectively find a global opti-
mal solution to (WCLO2)when the involved matrix Q
in the underlying problem has only a few columns.
We have proposed a hybrid algorithm,which combines
the SCO approach with the nonlinear SDR and dis-
junctive cut techniques, to find a tight bound for generic
(WCLO2). Numerical experiments illustrate that the
obtained bounds are stronger than what have been
reported in the literature. We have also integrated
LO relaxation and complementarity branching tech-
niques to develop a finite branch-and-bound algo-
rithm to solve globally (WCLO∞) and evaluated its
performance. Finally, we have integrated the proposed
global algorithms for WCLO with cutting plane ap-
proaches to develop effective algorithms tofind a globally

Table 11. Average Numerical Results of Algorithm 5, Algorithm 6, and C&CG for
WCTSRLT with p � ∞

Size Algorithm 6 Algorithm 5 C&CG

m n r Gap Time Iter Gap Time Iter Gap Time Iter

3 3 2 5.1e-017 (5) 0.198 1.4 3.0e-016 (5) 0.124 4.4 −2.5e-011 (5) 0.371 1.4
5 5 3 1.2e-016 (5) 0.229 1.6 1.2e-016 (5) 0.229 7.2 −9.2e-017 (5) 0.678 1.6
7 7 4 8.6e-017 (5) 0.283 1.8 2.4e-016 (5) 0.444 10.6 8.6e-017 (5) 2.153 1.8
10 10 5 −5.0e-016 (5) 0.508 2.6 1.7e-016 (5) 1.707 21.4 9.8e-017 (5) 22.713 3.2
15 15 5 1.1e-018 (5) 0.639 2.8 1.4e-008 (5) 7.062 62.6 4.2e-001 (0) 769.124 1.0
20 20 5 8.1e-017 (5) 0.865 3.0 5.2e-016 (5) 10.750 71.2 − − −
30 30 5 2.0e-016 (5) 2.068 4.0 1.4e-007 (5) 50.174 141.2 − − −
50 50 5 1.1e-016 (5) 6.455 3.6 1.4e-002 (1) 546.924 249.8 − − −
100 100 5 4.6e-008 (5) 22.838 3.2 5.6e-002 (0) 605.861 106.4 − − −
20 20 10 1.5e-016 (5) 24.723 3.8 7.7e-014 (5) 169.490 31.8 − − −
30 30 10 1.4e-016 (5) 57.245 4.4 2.5e-002 (0) 604.890 57.2 − − −
50 50 10 1.8e-016 (5) 182.154 3.6 1.0e-001 (0) 616.701 14.6 − − −
100 100 10 3.4e-004 (3) 599.337 3.8 1.5e-001 (0) 629.574 4.2 − − −
Notes. The number in parentheses stands for the number of instances for which the absolute gap
obtained by the algorithm is less than ε � 10−5 within 600 seconds. The sign “−” stands for the situations
where the first iteration of the algorithm is not terminated within 600 seconds in all cases.

Table 12. Average Numerical Results of Algorithm C for
WCTSRLT with p � 1

Size Algorithm C Size Algorithm C

m n r Opt.val Time m n r Opt.val Time

20 20 5 2.830245 0.104 20 20 10 2.281078 0.124
30 30 5 3.967852 0.142 30 30 10 2.646612 0.199
50 50 5 4.543949 0.294 50 50 10 5.383468 0.492
100 100 5 10.460254 1.218 100 100 10 9.426302 2.484
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optimal solution for (TSAROp) with p � 2,∞. A future
research topic is to investigate whether we can de-
velop effective global algorithms for generic (WCLOp)
and (TSAROp).

Endnote
1All of the data and codes used in Section 7 can be downloaded from
https://github.com/rjjiang/WCLO.
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