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Abstract

The cubic regularization (CR) algorithm has attracted a lot of attentions in the literature
in recent years. We propose a new reformulation of the cubic regularization subprob-
lem. The reformulation is an unconstrained convex problem that requires computing
the minimum eigenvalue of the Hessian. Then, based on this reformulation, we derive a
variant of the (non-adaptive) CR provided a known Lipschitz constant for the Hessian
and a variant of adaptive regularization with cubics (ARC). We show that the iteration
complexity of our variants matches the best-known bounds for unconstrained mini-
mization algorithms using first- and second-order information. Moreover, we show
that the operation complexity of both of our variants also matches the state-of-the-art
bounds in the literature. Numerical experiments on test problems from CUTEst col-
lection show that the ARC based on our new subproblem reformulation is comparable
to the existing algorithms.
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1 Introduction

Consider the generic unconstrained optimization problem
min f(x), 1
min f(x) M

where f : R” — R is a twice Lipschitz continuously differentiable and possibly
nonconvex function. Recently, the cubic regularization (CR) algorithm [1, 2] or its
variants has attracted a lot of attentions for solving problem (1), due to its practical
efficiency and elegant theoretical convergence guarantees. Each iteration of the CR
solves the following subproblem

. . l T T T
minm(s) ;= =s Hs+g s+ = |s|°, (CRYS)
seR” 2 3

where H and g represent the Hessian and gradient of the function f at the current
iterate, respectively, ||-|| denotes the Euclidean /> norm, H is an n X n symmetric
matrix (possibly non-positive semidefinite) and o is a regularization parameter that
may be adaptive during the iterations. This model can be seen as a second-order Taylor
expansion plus a cubic regularizer that makes the next iterate not too far away from the
current iterate. It is well known that under mild conditions ( [1, 2]), the CR converges
to a point satisfying the second-order necessary condition (SONC), i.e.,

Vfx) =0, Vf(x)>0,

where (-) > 0 means (-) is a positive semidefinite matrix. In the literature, it is of great
interests to find a weaker condition than SONC, i.e.,

IVl < €gy Amin(VEF(X)) = —€n,  €g,€m > 0, 2)

where Anin (H) denotes the minimum eigenvalue for a matrix H. Condition (2) is often
said to be (€g4, €) stationary.

The CR algorithm was first considered by Griewank in an unpublished technical
report ( [3]). Nesterov and Polyak [1] proposed the CR in a different perspective and
demonstrated that it takes O(e, 3 2) iterations to find an (eg, eél,/ 2) stationary point
if each subproblem is solved exactly. As in general the Lipschitz constant of the
Hessian is difficult to estimate, Cartis et al. [2, 4] proposed an adaptive version of
the CR algorithm, called the ARC (adaptive regularization with cubics), and showed

that it admits an iteration complexity bound O (max{e; 3/ 2, 6;13 }) to find an (eg, €g)
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stationary point, when the subproblems are solved inexactly and the regularization
parameter o > 0 is chosen adaptively.

Besides iteration complexity O(e, 3 2), many subsequent studies proposed vari-
ants of the CR or other second-order methods that also have an operation complexity
@(EQ 7 4) (where @(-) hides the logarithm factors), with high probability, for finding
an (€g, e;/ 2) stationary point of problem (1). Here, a unit operation can be a function
evaluation, gradient evaluation, Hessian evaluation or a matrix vector product ( [5]).
Based on the CR algorithm, Agarwal et al. [6] derived an algorithm with such an
operation complexity bound, where the heart of the algorithm is a subproblem solver
that returns, with high probability, an approximate solution to the problem (CRS) in
@(eg_ 1 4) operations. After that, Carmon et al. [7] proposed an accelerated gradient
method that also converges to an (eg, eé/ 2) stationary point with an operation com-

plexity @(eg_ & 4). Royer and Wright [8] proposed a hybrid algorithm that combines
Newton-like steps, the CG method for inexactly solving linear systems, and the Lanc-
zos procedure for approximately computing negative curvature directions, which was
shown to have an operation complexity @(eg_ i 4) to achieve an (eg, e;)/ 2) stationary
point. Royer et al. [9] proposed a variant of Newton-CG algorithm with the same
complexity guarantee. Very recently, Curtis et al. [5] considered a variant of trust-
region Newton methods based on inexactly solving the trust-region subproblem by
the well-known “trust-region Newton-conjugate gradient” method, whose complexity
also matches the-state-of-the-art. All the above-mentioned methods [5, 7-9] converge
with high probability like [6], which is due to the use of randomized iterative methods
for approximately computing the minimum eigenvalue, e.g., the Lanczos procedure.

Despite theoretical guarantees, the practical efficiency of solving (CRS) heavily
affects the convergence of the CR algorithm. Although it is one of the most successful
algorithms for solving (CRS) in practice, the Krylov subspace method ( [2]) may fail
to converge to the true solution of (CRS) in the hard case! or close to being in the
hard case. Carmon and Duchi [10] provided the first convergence rate analysis of the
Krylov subspace method in the easy case, based on which the authors further propose
a CR algorithm with an operation complexity @(eg " 4) in [11]. Carmon and Duchi
[12] also showed the gradient descent method that works in both the easy and hard
cases is able to converge to the global minimizer if the step size is sufficiently small,
though the convergence rate is worse than the Krylov subspace method. Based on a
novel convex reformulation of (CRS), Jiang et al. [13] proposed an accelerated first-
order algorithm that works efficiently in practice in both the easy and hard cases, and
meanwhile enjoys theoretical guarantees of the same order with the Krylov subspace
method.

However, the methods in the literature ( [1, 2, 4, 6-9, 11, 13]), either somehow
deviate the framework of the CR or ARC algorithms, and/or do not present good prac-
tical performance and an @} (eq "’ 4) operation complexity simultaneously. Our goal in
this paper is to propose variants of the CR and ARC based on new subproblem refor-
mulations that achieve the state-of-the-art complexity bounds and also remain close

1 For the problem (CRS), it is said to be in the easy if the optimal solution x™* satisfies p||x*|| > —Amin(A),
and hard case otherwise.
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to the practically efficient CR and ARC algorithms. Motivated by the reformulation
in [13], we deduce a new unconstrained convex reformulation for (CRS). Our refor-
mulation explores hidden convexity of (CRS), where similar ideas also appear in the
(generalized) trust-region subproblem ( [14—17]). The main cost of the reformulation
is computing the minimum eigenvalue of the Hessian. We propose a variant of the CR
algorithm with strong complexity guarantee. We consider the more realistic case where
eigenvalues of Hessians are computed inexactly. In this setting, we suppose the Lips-
chitz constant of the Hessian is given as L, the parameter o = L /2 is non-adaptive, and
each subproblem is also solved approximately. We prove that our algorithm converges
to an (eg, \/E ) stationary point with an iteration complexity O(e, 3 2). Moreover,

we further show that each iteration costs @(eg_ 1 4) when the minimum eigenvalue of
the Hessian is inexactly computed by the Lanczos procedure, and the subproblem,
which is regularized to be strongly convex, is approximately solved by Nesterov’s
accelerated gradient method (NAG) [18] in each iteration. Combining the above facts,
we further demonstrate that our algorithm has an operation complexity @(eg_ " 4) for
finding an (eg, \/E) stationary point. Based on the reformulation, we also propose a
variant of the ARC with similar iteration and operation complexity guarantees, where
oy is adaptive in each iteration.

The remaining of this paper is organized as follows. In Sect. 2, we derive our
unconstrained convex reformulation for (CRS), describe the CR and ARC algorithms
and the basic setting, and give unified convergence analysis for sufficient decrease in
the model function in one iteration. In Sects. 3 and 4, we give convergence analysis
for the CR and ARC algorithms for finding an approximate second-order stationary
point with both iteration complexity and operation complexity bounds that match the
best-known ones, respectively. In Sect. 5, we compare numerical performance of an
ARC embedded by our reformulation with ARCs based on the existing subproblem
solvers. We conclude our paper in Sect. 6.

2 Preliminaries

The structure of this section is as follows. In Sect. 2.1, we first propose our reformu-
lation for the subproblem (CRS). Then, in Sect. 2.2, we mainly describe the framework
of our variants of the CR and ARC algorithms and also state our convergence results.
Finally, in Sect. 2.3, we give unified convergence analysis of one iteration progress
for both the CR and ARC algorithms.

2.1 A New Convex Reformulation for (CRS)
In this subsection, we introduce a new reformulation for (CRS) when Apin (H) < 0,

i.e., the minimum eigenvalue of H is negative. First, recall the reformulation proposed
in [13]:
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1
min gTs +-s (H—al)s+ z)13/2 + gy
s,y 2 3 2

) 3)

2 a
sty = |sl®, ¥y = —,
o
where o« = Amin(H). However, this reformulation may be ill-conditioned and cause
numerical instability when y is small since the Hessian of the objective function for y
is %y‘l/ 2, which approaches infinity when y — 0. Unfortunately, this is the case for
the CR or ARC algorithms when the iteration number k becomes large. We also found
that due to this issue and that y is of the same order with ||s||2, CR or ARC based
on solving subproblem (3) cannot achieve the state-of-the-art operation complexity
Oeg 7 4) for finding an (g, \/L¢,) stationary point. To amend this issue, we proposed
the following reformulation,

P o Te YT 73,92
minm(s,y) =g s+ =5 (H—al)s+ -y + =y
sty =|sll, y=-—

’

QR

so that y is of the same order with ||s]|.

One key observation of this paper is that (CRS,) can be simplified into a convex
problem with single variable s, by applying partial minimization on y. Note that given
any s € R”, the y-problem of (CRS,) is

. [0 3 a - o
min {257+ 237 v > sl y > =2}

yeR L 3 2

whose optimal solution is uniquely given by
o
y = max {[is], == ©
o
This is because the derivative of the objective function is o y> + ay, satisfying
o
oy’ +ay =Gy(y+;) >0,

due to the constraints y > 0 and y > —%. Substituting (4) into (CRS,), we obtain
that (CRS,) is equivalent to

min {M(s) =gls+ lsT(H —al)s + Ja,g(s)} , (CRS,)
seR” 2
where
o 113 o o172
S ) = 5 [max { sl == "+ 5 [max {ist. == ] 5)
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In the following, we show that Jy »(s) is a convex and continuously differentiable
function.

Proposition1 For any o > 0 and a € R, Jy () is convex and continuously differ-
entiable on R". Moreover, we have

Viao(s) =[olsll +al; -, Vs e R",

where [a]+ = max{a, 0} for any a € R.

Proof We consider the two cases (a) @ > 0 and (b) @ < 0 separately.

(a) If « > 0, then by 0 > 0, we have ||s|| > —«/o for all s € R". Thus, Jy 5 (s)
reduces to

o (07
Juo(s) = ZlIsIP + S lsl*, Vs e R".
3 2
It is clear that in this case Jy, (s) is convex and continuously differentiable, and
Viao(s) =0ollslls +as = (olsl|l +a) -s = [olls]| + oy - s,
where the last equality is due to o > 0.

(b) Now we consider the case « < 0. Note that the following identity holds for any
oc>0,0,y€eR:

03+a2_a(+a)3 a(+a)2+a3
37T T3V TRV ) Teer
By this, we can rewrite Jy 4 (s) in (5) as
Suo® = Zisti+ &) = £ usi+ 2] + & (©)
$)=—=|lsl+—=| —=|lIsl+— —.
*7 3 oly 2 oly 602

Note that ||s|| + /o is a convex function of s. In addition, [-]3r and [-]%r are both
non-decreasing convex functions. Thus, we obtain that

sy s=[Is1+ 2] and ats) = st + 2]

are convex functions. This, together with « < 0 and (6), implies that J,  (s) is
convex. Also, it is easy to verify that

s

if f|s| < —

Vhi(s) =1 5 2 .
1 {3(||s||+%) R sl > -

if f|s| < —

0
Vh = ’ .
2(s) {2(||s|| +e). it s) > -

QIRAIR QIR QR
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This, together with (6), implies that

0, if fIsll < =5
o

Viao(s) = { @lsll +a)-s, ifls] >—=.

It then follows that J, » (s) is continuously differentiable and
VJDt,O'(S) = [o|sll + aly -s.

Combining the results in cases (a) and (b), we complete the proof.

We immediately have the following results.

Corollary 1 The m(s) in (CRS,) is convex and continuously differentiable, and
Vim(s) =g+ (H —al)s+[o]s|| + ol s.
Moreover, if o||s|| +a = 0, we have

m(s) = m(s) and Vm(s) = Vm(s).

2.2 Variants of the CR and the ARC Algorithms and Main Complexity Results

In this subsection, we first summarize our variants of the CR and ARC algorithms
in Algorithms 1 and 2. Note that the only difference between Algorithms 1 and 2 is that
Algorithm 2 has an adaptive regularizer oy in the model function, where the Hessian
Lipschitz constant L is replaced by the adaptive parameter 20y, and thus Algorithm 2
needs carefully choosing parameters related to oy.

Before presenting the convergence analysis, we give some general assumptions
and conditions that are widely used in the literature. We first introduce the following
assumption for the objective function, which was used in [19].

Assumption 1 The function f is twice differentiable with f* = min, f(x), and has
bounded and Lipschitz continuous Hessian on the piece-wise linear path generated by
the iterates, i.e., there exists L > 0 such that

IV2 £ (x) = V2 f ol < Lllx — xill,  Vx € [xe, xx + dx], (11)

where xj is the kth iterate and dj is the kth update. Here || A|| denotes the operator
2-norm for a matrix A.

An immediate result of Assumption 1 is the following well-known cubic upper bound

for any s € R” (cf. equation (1.1) in [2])

T I 1 L. 3
f(xk+S)—f(xk)<ng+§S HkS-l-gIISII- (12)
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Algorithm 1 A variant of the CR algorithm using reformulation (CRS,)
Require xp, €¢g >0, L >0,eg = ,/Leg/3and eg = €5 /9

1fork=0,1,---,do

2 evaluate g; = V.f(x), Hy = V2 (xp),

3 compute an approximate eigenpair (g, vg) such that oy = v}j Hyvr < Amin(Hy) + €
4 if |lgkll < €g and g > —2ef then
5 return xj
6 endif
7 if o > —€g then
8 solve the regularized subproblem approximately
. r T LT L3
Sk A argmingcpn {mk(s) =g s+ Es (Hy +3€epl)s + glls\l‘ } s (7)
9 d = sk, X1 = X + d
10 else
11 solve the regularized subproblem approximately
S A argmingcpn {ﬁli(s) = g,js + %ST(Hk —apl +2epl)s + Jk(s)} s (8)
where Ji(s) = Jo; 1/2(5)
12 if Lilsg | + 2c; > 0 then
13 dy = sy
14 else
15 wy = Py such that |wy || = |ag| and wkTgk <0
16 di = +wy
17 end if
18 Xk+1 = Xk +dk
19  endif
20 end for

As in practice, it is expensive to compute the exact smallest eigenvalue, we consider
the case that the smallest eigenvalue is approximately computed. Note that in line 3
of Algorithm 1 (and line 4 of Algorithm 2), we call an approximate eigenvalue solver
to find an approximate eigenvalue o and a unit vector v, such that

Amin (Hi) < o = vaHkvk < Amin(Hg) + €.

To make the model function €g-strongly convex, we add %EE sk |2 to my or g ||sk||>
to . (denoted by mj or m}), i.e.,

1 o
mi(s) = gl s + EST(H]( +3epD)s + §||s||3
and

N & 1 + -
mp(s) =g, s+ zs (Hp — apl +2epl)s + Ji(s),
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Algorithm 2 A variant of the ACR algorithm using reformulation (CRS,,)
Require xp, 2>y >1,1>1n>0,00>0,eg >0,eg = ,/Leg/3and €5 = €4/9
1fork=0,1,---,do
2 evaluate g = V f(xg), Hy = sz(xk),

3 compute an approximate eigenpair (g, vg) such that oy = v}j Hyvr < Amin(Hy) + €
4 if |lgkll < €g and g > —2ef then
5 return xj
6 endif
7 if o > —€g then
8 solve the regularized subproblem approximately
. r T, LT %k 13
Sk A argmingcpn {mk(s) =g s+ ES (Hy +3epl)s + ?Hsll } s O]
9 dr = si
10 else
11 solve the regularized subproblem approximately
Sk A argmingcpn {ﬁli(s) = g,js + %ST(H,( —apl +2epl)s + fk(s)} , (10)
where jk(s) = Jog.,01 (5)
12 if oy |Iskll + ox = 0 then
13 dy = sy
14 else
15 wy = Py such that |wy || = |ag| and wkTgk <0,
16 di =z wi
17 end if
18 endiff( Y f G
Xk )— X,
9 o= k*'ﬂk(d/’:) ‘
20 if pp > norag < —eg then
21 Xk+1 = Xk + dk, o1 =0k /V > successful iteration
22 else
23 Xk+1 = Xk, Ok4+1 = YOk > unsuccessful iteration
24 endif
25 end for

where Ji(s) = Joy,o(5) = § [max {lisll, =% }]* + 4 [max {lis|l, ~%}]". Here we
have o = % for Algorithm 1 and o = oy for Algorithm 2. Since our reformulation is
designed for the case that the smallest eigenvalue of the Hessian is negative, we solve
mj (s) when the approximate smallest eigenvalue is larger than or equal to criteria —e
and solve i (s) otherwise.

To make algorithms more practical, we allow that the subproblems are approxi-
mately solved under certain criteria, i.e., the gradient norm of the model function is
less than or equal to €.

Condition 1 The subproblems (7) and (9) are approximately solved such that

[Vmy (sl < es. (13)
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The subproblems (8) and (10) are approximately solved such that
VA (si)ll < €s. (14)

Remark 1 We may also replace Condition 1 by the following stopping criteria

19mj (sl < max {¢lsel1%, es} and IV s < max {¢ sl es

for some prescribed ¢ € (0, 1) where similar ideas are widely used in the literature
[2, 4, 19]. Such stopping criteria have an advantage in practice if ||sx || is large. By
slightly modifying our proof, we still have an iteration complexity O(e, 3 2) and an

operation complexity @(eg_ 7 4).

For simplicity of analysis, we consider the following condition for both Algo-
rithms 1 and 2. We remark that the constants in the following condition may be
changed slightly and we will still have the same order of complexity bounds.

2
Condition2 Setep = %JLeg and €g = %’ = %E

From now on, we suppose that Assumption 1 and Conditions 1 and 2 hold in
the following of this paper. Our first main result is that both Algorithms 1 and 2

find an (eg, \/E) stationary point in at most O (e; 3/ 2) iterations (see Theorems 1
and 3). Then, we will show that under some mild assumptions (Assumptions 2 and 3),
if the eigenvalue is approximated by the Lanczos procedure and the subproblem is
approximately solved by NAG, then each iteration costs at most O(e < 1/ 4) operations.

Thus, the operation complexity of Algorithm 1 is @(eg_ i 4) (see Theorem 2). Similar
results also hold for the ARC and are omitted for simplicity.

Remark 2 Our goal is to present variants of the CR and ARC that are close to their
practically efficient versions ( [1, 2, 4]). Most of the existing works on the CR or ARC
do not present an operation complexity @(6; 7 4) ([1, 2,4, 19]), while other existing
works in the framework of the CR or ARC that prove to admit an operation complexity
(7)(6; i 4) ( [6, 11]) deviate more largely form the practically efficient versions than
ours. The subproblem solver in [6] requires sophisticated parameter tuning and seems
hard to implement in practice. The iteration number of each subproblem solver in [11]
is set in advance, which may take additional cost in practice if the subproblem criteria
are early met. Moreover, both works are restricted to the case of known gradient and/or
Hessian Lipschitz constant, and they are restricted to the CR case. On the other hand,
our methods are more close to the practically efficient CR and ARC algorithms in [1,
4]. We only add an additional regularizer %6 £lls||? or €z |ls||? to the original model
function in the CR or ARC, use an approximate solution as the next step in most
cases (in fact related to the easy case of the subproblem), and use a negative curvature
direction in the other case (related to the hard case).
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2.3 Progress in One Iteration of the Model Function

In this subsection, we give unified analysis for the descent progress in one iteration
of the models for both the CR and ARC algorithms, which will be the heart of our
convergence analysis of iteration complexity for the CR and ARC algorithms.

Proposition 2 [f Algorithm 1 terminates (at line 5) or Algorithm 2 terminates (at line
5), then the output xy is an (g, \/Lé€g) stationary point.

Proof Note that in line 5 of either Algorithm 1 or Algorithm 2, we have |gi|l < €g
and o > —2eg. Combining o < Amin(Hy) + € and o > —2€g, we obtain
Amin(Hy) = —3eg = —,/Le, due to Condition 2. This, together with ||gx|| < eg,
yields the desired result.

In the following two lemmas, we show sufficient decrease can be achieved in the
case where either oy > —efg or o < —eg. The proofs for both lemmas defer to the
appendix.

Lemma 1 Supposethat xi+dy isnotan (eq, \/Leg) stationary point. Suppose Assump-
tion 1 and Conditions 1 and 2 hold and o > —efg for some iteration k. Then, for
Algorithm 1, we have

&
—m(di) > 5.

For Algorithm 2, we have

. 3 3
—m(dy) > min , 1 ==
max{y, 200/L} + 1 L?

Lemma 2 Suppose that xi+dy isnotan (eq, \/ L€g) stationary point. Suppose Assump-
tion 1 and Conditions 1 and 2 and in addition 1 < y < 2 for Algorithm?2, if oy < —€g.
Then, for Algorithm 1, we have

mde) > <E
- k) = 3?
For Algorithm 2, we have

3

€
—m(dy) > £ )
") 2 3 ax{zon, y L)

3 Convergence Analysis for the CR Algorithm
In this section, we first give iteration complexity analysis of the CR algorithm and

then study its operation complexity in the case that the subproblem is solved by Nes-
terov’s accelerated gradient method (NAG) and the approximate smallest eigenvalue
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of the Hessian is computed by the Lanczos procedure. The notation in this section
follows that in Sect. 2.

We have the following theorem that gives a complexity bound that matches the
best-known bounds in the literature [1, 4, 19].

Theorem 1 Given Assumption 1 and Conditions 1 and 2, Algorithm 1 finds an
(€g, \/Leg) stationary point in at most O (6g_3/2) iterations.

Proof First note that (12) implies f(xx + dx) — f(xx) < m(dg). Combining Propo-

sition 2, Lemmas 1 and 2 and Condition 2, and noting o = L/2 for Algorithm 1, we
have

1
S ) — Ok +dy) = me%.

Adding the above inequalities from 0 to 7', we have

T
fxo) — fxr) = mf%

Noting that f(x) is lower bounded from Assumption 1, we complete the proof.

Next, we give an estimation for the cost of each iteration and thus obtain the total
operation complexity. Particularly, we invoke a backtracking line search version of
NAG [18] (described in Algorithm 3) to approximately solve the subproblems (7) and
(8) in Algorithm 1. Note that the objective functions mj_and 1} in (7) and (8) are both
eg-strongly convex. In Algorithm 3, & stands for either m;, or n; .

Algorithm 3 NAG for minimizing m strongly convex smooth functions %(z)
Require i, Vh, 1y > 0,6p € (0, 1], B € (0, 1), initial point zg € R"

1for/=0,1,---do

2 if [ > 1 then

3 n=t_1, > initial step size for the /th iteration
92
4 V= oy
92
5 ==y +mb
6  endif
7 y=Z1+%(v1—21) (v = zo forl = 0),
8 zi41=y—1Vh(y)
9 while h(y — 4 VA(y)) > h(y) — $1VA(y)|? do
10 1 =By,
11 Zi41 =y — 1 Vh(y)

12 end while
13 vyp=z+ 917(Zl+1 -z
14 end for
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Assumption 2 Suppose that for any extrapolated point y, and any ¢ € (0, 7], there
exists an upper bound for ||y — tVh(y)||, i.e., there exists M, > 0 such that ||y —
tVh(y)|| < M,,. Moreover, we assume

lzill < My, VI >0and ||z < My,

where z; is given in Algorithm 3 and z* is the optimal solution of the subproblem (7)
or (8).

The above assumption is easy to meet. Indeed, z; is bounded because /(z;) is bounded
from standard analysis for NAG (e.g., equation (15)), & is strongly convex and
dom(h) = R", which is the case for m} and ;. Meanwhile, y — ¢V f(y) is bounded,

. . . . . . 9”/1
if, noting that y is a linear combination of z; and z;_1, SrAml

constants, which is quite mild and holds in most practical cases.
We also make the following assumption that is widely used in the literature [2, 19].

and 9% are bounded

Assumption 3 Suppose the Hessian Hj is bounded in each iteration of Algorithm 1,
i.e., there exists some constant My > O such that

IV2f )|l < M.

The above two assumptions, together with Assumption 1, yield the following Lip-
schitz continuity result on the gradient VA (y).

Lemma 3 Under Assumptions 1, 2 and 3, the gradients of mj and m} are Lg :=
2Mpy + 3eg + LM, Lipschitz continuous on the line path [y, y — toVh(y)] for any
extrapolated point y in line 7 and the line path [z;, z*] in Algorithm 3.

Proof 1Tt suffices to show that for any p and ¢ with || p|| < M, and |¢|| < M,, we
have

IVA(p) = VR < Lslip — 4l

where £ stands for either mj, or 7}.. From the definition of m}, we have

Vi (p) — Vmi (@)l = '

L L
Hy(p—q)+3ep(p—q) + Ellpllp - Ellqllq“
L
< N He(p — Il +3eellp — gl + 7 Idiplip = liplig) + dipllg = gl

L
< (”Hk” +3ee+ S dlpl+ ||q||)> lp —qll

< (Mp +3eg + LMy)|lp —qll,

where the last inequality follows from Assumptions 2 and 3.
To show the Lipschitz continuity of Vni;, we need to consider three cases:
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1. Both [|p]l + 20”‘ > 0and |gll + l% > 0. In this case, both @mi(p) = Vm(p) —
€gp and Vm k(q) = Vmj (q) — egq. With a similar analysis to the previous proof,
it is easy to show ﬁmz (p) is (Mg + 2¢eg + LM,) Lipschitz continuous.

2. Both || pll + 20”‘ < Oand| gl + %% < 0.Ttis trivial to see @mi(p) is (Mg +2¢€g)

Lipschitz contlnuous as ka (p) = ij (g) =0.
3. Either () [|pll + %% > 0, llg|l + %% < 0 or ) [Ip]l + % <0, llg]| + %~ > 0.
Due to symmetry, we only prove the first case. From Proposmon 1, we have

~, -, L
Vi (p) — Vi () || = H(Hk —axl)(p—q) +2ee(p—q) + <EIIPII +0tk> p —OH
L
< I(He —aD(p — Il + 2€ellp — qll + H(EHPH +ak)PH
L L
< QI Hill 4 3€p) Ilp — qll + H(Ellpll +ak> p— <5Hq|| +ak> PH

L
< <2MH +3ep + EM"> lp—ql,

where in the second inequality we use || Hy — ax I || < 2||Hk|| + €E as Amin(Hi) +
€E = ok = Amin(Hy) and 2L ||q|| + o < 0, and the last inequality follows from
Assumptions 2 and 3.

Now let us give an estimation for the iteration complexity of Algorithm 3 to achieve
a point such that ||Vhi(z))| < es.

Lemma4 Suppose Algorithm 3 is used as subproblem solvers for (7) and (8). Given
Conditions 1 and 2 and Assumptions 1, 2 and 3, Algorithm 3 takes at most o ( -l 2)

2
iterations to achieve a point such that ||Vh(z))|| < €5 = TE Moreover, the cost in
each iteration is dominated by two matrix vector products.

Proof Note that either mj or m is eg-strongly convex due to the definitions, and

L s-smooth due to Lemma 3. From complexity results of NAG in [18, 20], we obtain
that

h(z) — h* < TIZ1 (1 — Jepn)C, (15)

where C = | (1 — 0g)(h(xg) — h*) + 5% 2z0 ||xo —X ||2) and t; > min{#y, §/Ls}. Thus,
(15) further yields

k—1

W) = h* < (1= ep minfo, B/Ls})  C.

Therefore, it takes at most T = (’)( é log é) to achieve a solution such that
h(zr) — h* < €.
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From the Lg smoothness of mj,_and /i along the line [z, z*] (due to Lemma 3),
we further have

1
— VR |? < h(z)) —h*, Yk >0.
2Lg

Thus, by letting €, = e§/2LS, we have

1 €2
IVA(z)| < v/2Lsen = €5 = 56 = =3

Hence, the iteration complexity for || VA (z7)| < esis O ( é log é) =0 (6;1/2)

Note that each iteration of Algorithm 3 requires one gradient evaluation of VA(y)
according to the expression of m; and i), where the most expensive operator is the
Hessian-vector product Hy y. Then, the function evaluation of /() is cheap if we store
Hiy. Meanwhile, to compute my(y — t;Vh(y)) for different ;, we have

T T I+ T
mp(y —tiVh(y)) = g, vy — 18 Vh(y) + 3y Hyy — 11y HyVh(y)
i T L 3
+5Vh(y) HVh(y) + glly -4 Vh()II7,

whichcosts O(1) if HkVh(y), g{ v, 8 Vh(Y), y" Hey, y T HiVA(y), Iyl v VA(y)
and ||Vh(y)|| are provided (using ||y — 4 VA()|? = [lyI* — 24y Vh(y) +
lzVA(»)|1?). Note that in the /th iteration, we have fo > # > min{8/Ls, to}. We
thus at most do O(1) searches for 8. So in one iteration, the total cost is two matrix
vectors products and O(n) other operations. With a similar analysis, the same com-
plexity result holds for ;.

The following lemma shows a well-known result that the smallest eigenvalue of a
given matrix can be computed efficiently with high probability.

Lemma5 ([21] and Lemma 9 in [8]) Let H be a symmetric matrix satisfying |H| <
Uy forsome Uy > 0, and Amin (H) its minimum eigenvalue. Suppose that the Lanczos
procedure is applied to find the largest eigenvalue of Uyl — H starting at a random
vector distributed uniformly over the unit sphere. Then, for any ¢ > 0 and § € (0, 1),
there is a probability at least 1 — § that the procedure outputs a unit vector v such that

2
v Hv < Amin(H) 4+ € in at most min {n % Ué—”} iterations.

Now we are ready to present the main result in this section that Algorithm 1 has an
operation complexity O (eg i 4).

Theorem 2 Suppose the approximate eigenpair in line 3 of Algorithm 1 is computed
by the Lanczos Procedure, and subproblems (7) and (8) are approximately solved by
Algorithm 3. Under Conditions I and 2 and Assumptions 1, 2 and 3, the algorithm finds
an (€g, /E) stationary point with high probability, and in this case the operation

complexity of Algorithm 1 is @) (6;7/4).
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Proof First, note that the iteration complexity is O(e; 3/ 2), due to Theorem 1.

At each iteration, if the subproblems are approximately solved in line 8 or 11 in
Algorithm 1, the subproblem iteration complexity is (’)(egl/ 2) = O(eg 1/ 4) because
that eg = /L€, /3, and that the dominated cost is (’j(eg_ 1/ 4) matrix vector products,
thanks to Lemma 4.

Another cost at each iteration is inexactly computing the smallest eigenvalue. Note
that the failure probability of the Lanczos procedure is only in the “log factor” in the
complexity bound. Hence, for any given 8 € (0, 1), in the Lanczos procedure we
can use a very small § like § = 8’/T, where T is the total iteration number bounded
by O(e, 3/ 2). Then, from the union bound, the full Algorithm 1 finds an (e, \/Leg)
stationary point with probability 1 —4§’. From Lemma 5, it takes @(eg 1/ 2) =0 (€q 1/ 4)
matrix vector products to achieve an € g approximate eigenpair, with probability at least
1-4.

As the iteration complexity of Algorithm 1 is O(eg 3 2) and each iteration takes

@(eg 1/ 4) unit operations, we conclude that the operation complexity is @(6; 7 4).

4 Convergence Analysis for the ARC Algorithm

In this section, we first show that the ARC algorithm also has an iteration complexity
@) (eg_3/ 2) for finding an (eg, \/Le€,) stationary point. Then, we will briefly analyze
its operation complexity in the case that the subproblem is solved by NAG and the
approximate smallest eigenvalue of the Hessian is computed by the Lanczos procedure.
The notation in this section follows that in Sect. 2.

To show the iteration complexity of the ARC algorithm is still O(eg 3 2), the key
proof here is that we need to counter the iteration number for successful steps. Specif-
ically, we need the following lemma that shows when oy is large enough, the iteration
must be successful.

Lemma 6 Suppose Assumption 1 holds. If o, > L/2 and my(dy) < O, then the kth
iteration is successful.

Proof By (12) and oy > L/2, we have

1 L
FOx +d) — fo) < gl di + zd,? Hydy + gndkn3
1 ok
< gl di + EdkTdek + g||dk||3
=myi(dr) < O.

This yields pr = W > 1 > n. Thus, the kth iteration is successful.

The following lemma shows that the adaptive regularizer is bounded above.

Lemma 7 Suppose Assumption 1 holds. Then, o, < max{og, yL/2}, Vk > 0.
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Proof Suppose the kth iteration is the first unsuccessful iteration such that ox] =
yor = yL/2, which implies o > L/2. However, from Lemma 6, we know that the
kth iteration must be successful and thus oy+1 = o} /y < ok, which is a contradiction.

Now we are ready to present our main convergence result of Algorithm 2, which is
of the same order with the best-known iteration bound ( [4, 19]).

Theorem 3 Suppose that Assumption 1 and Conditions 1 and 2 hold, and max{%, %} <

1. Then, Algorithm 2 takes T < (’)(eg_S/z) iterations to find an (€4, \/L€g) stationary
point.

Proof Note that
T =S|+ U], (16)

where S is the index set of successful iterations and I/ is the index set of unsuccessful
iterations. Here, |.4| denotes the cardinality of a set .A. Since o7 = GOJ/WH‘S I'and
or < max{og, yL/2} due to Lemma 7, we have

L
U] < max {0, log, (%)} +1SI. (17)
0

Note also that S = S} U S, where

S1:={keS:|IVflxx +dpll < egand Amin(Hi+1) = —/Lég},
S =8\ S;.

Now we have

FO0) = f* 2 f ) = [ =) fO) = f(xrgr)

k=0 keS
> Y fa) = fOg)

keS,
> Y —nmy(dy)

keSy

3 1 e
= Z 1 min .1, Lk
e max{y, 200/L} + 1" 3(max{200/L,yH*>| L2

2

where the fifth inequality follows from Lemmas 1 and 2. This, together with e =

V' Leg/3, gives
1521 < Oeg ™).

@ Springer



R.Jiang et al.

It is obvious that |S;| = 1 as the algorithm terminates in one iteration. Then, we have
-3/2
SI=1811+15:1 < 0 (7).

This, together with (16) and (17), gives T < O(eg ).

In fact, with a similar analysis to Sect. 3, we can show that the operation com-
plexity for Algorithm 2 is still @(eg_ 7 4) to find an (eg, JE) stationary point under
mild conditions with high probability, if NAG and the Lanczos procedure are used in
each iteration. This is because the matrix vector product number in each iteration of
Algorithm 2 is still O(e g 1 4). Two key observations for proving the O (eq I/ 4) bound
of NAG are that oy is upper bounded by constants as shown in Theorem 3, and that
the subproblems are still €g-strongly convex and Lipschitz smooth. The Lipschitz
smoothness follows from a similar technique with Lemma 3 under Assumptions 2
and 3.

5 Numerical Experiments

This section mainly shows the effects of our new subproblem reformulation without
the additional regularizer € ||s||> for the ARC algorithm. We did numerical experi-
ments among ARC algorithms ( [2]) with different subproblem solvers and compared
their performance. We point out that we do not directly implement Algorithm 2 since
it is practically inefficient if we compute the minimum eigenvalue of the Hessian at
every iteration. Particularly, in Algorithm 4, we only call a subproblem solver based
on reformulation (CRS,,) if a prescribed condition is met.

Let f denote the objective function, g; denote the gradient V f (x;) and H denote
the Hessian V2 £ (x;). In Algorithm 4, we use the Cauchy point skc (as in [2]) as the
initial point of the subproblem solver in each iteration:

C o c :
sy = —og gk and o = argmin my (—og),
D[ER+

which is obtained by globally minimizing my (s) = g; + sT Hps + % Isi? along the
current negative gradient direction. Let A denote an arbitrary solver for (CRS), A,
denote an arbitrary solver for the constrained reformulation (CRS,) and A, denote an
arbitrary solver for the unconstrained reformulation (CRS,,). Because the subproblem
solver A, (or A,) are designed for cases where H is not positive semidefinite, and
the Cauchy point is a good initial point when the norm of the gradient is large, we call
the solver A, (or A,) if the following condition is met:

llgxll < max (f(xx), 1) €1 and  Amin(Hy) < —é2, (18)

where €] and €, are some small positive real numbers and Apin (Hy) is the minimum
eigenvalue of Hy. If condition (18) is not met, we call A to solve the model function
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directly. We only accept the (approximate) solution sy if my(sx) is smaller than that
mk(skc ); otherwise the Cauchy point skC is used. This guarantees that Algorithm 4
converges to a first-order stationary point under mild conditions ( [2,Lemma 2.1]).

Algorithm 4 ARC using convex reformulation

Require xg, yp >y > 1, 1 >m >n1 > 0,andog > O fork =0, 1, - - - until convergence
1 compute the Cauchy point s;;
2 if condition (18) is satisfied then
3 compute a trial step 5 using A, (or A,) with an initial point s,f

4 else

. - . - L C
5 cqmpute a trial step 5 using A with an initial point Sp
6 end if
7 set

S iEmg () < mp(sf):

Sk = .
k skC , otherwise.

8 compute f(x + sx) and

_ SOr) = f Ok +sk)
P =

—mp (sk)
9 set
PR B Sl S VU Ik
k+1 Xics otherwise.
10 set
(0, ok] s if pr > n2; (very successful iteration)
Ok+1 € 4 |0k V1 ak], if n1 < pr < n2; (successful iteration)
Y10k, yzak] , otherwise. (unsuccessful iteration)

We experimented with two subproblem solvers .4, for Algorithm 4. The first one
is the gradient method with Barzilai-Borwein step size ( [22]) and the second one is
NAG (here we denote it by APG to keep consistent with [13]). More specifically, in
our implementation, if condition (18) is not satisfied, we still solve (CRS) by BBM,;
otherwise we implement BBM or APG to solve the unconstrained problem (CRS,,).
The former is termed ARC-URBB, while the latter is termed ARC-URAPG. We com-
pare our algorithms to the ARC algorithm in [2], denoted by ARC-GLRT, in which
the subproblems are solved by the generalized Lanczos method. Besides, we also
implement Algorithm 4 with two different subproblem solvers .4, in [13], denoted
by ARC-RBB and ARC-RAPG, in which the subproblems are reformulated as (CRS;)
and solved by BBM and APG, respectively.

We implemented all the ARC algorithms in MATLAB R2017a on a Macbook Pro
laptop with 4 Intel i5 cores (1.4GHz) and 8GB of RAM. The implementations are based
on 20 medium-size (n € [500, 1500]) problems from the CUTEst collections ([23]) as
in [13], where condition (18) is satisfied in at least one iteration in our new algorithm.
For condition (18), we set €, = 1072 and € = 10~*. Other parameters in ARC

@ Springer



R.Jiang et al.

are chosen as described in [2]. All the subproblem solvers use the same eigenvalue
tolerance, stopping criteria, and initialization as in [ 13]. For BBMs, a simple line search
rule is used to guarantee the decrease in the objective function values. For APGs, a
well-known restarting strategy ( [24, 25]) is used to speed up the algorithm.

The numerical results are reported in Table 1. The first column indicates the name
of the problem instance with its dimension. The column f*, n;, Rprod » Nf , Ng and
neig show the final objective value, the iteration number, number of Hessian-vector
products, number of function evaluations, number of gradient evaluations and the
number of eigenvalue computations. The columns time, timeejg; and timejoop, sShow in
seconds the overall CPU time, eigenvalue computation time and difference between the
last two, respectively. Each value is an average of 10 realizations with different initial
points. Table 1 shows that with the same stopping criteria, all algorithms return the
same objective function value on 18 of the problems, except ARC-RAPG, ARC-URBB
and ARC-URAPG on the problem BROYDN7D with a lower final objective function
value, and ARC-GLRT on the problem CHAINWOO with a lower final objective
function value. Table 1 also shows the quantities n;, nprod, 7 and ng of the five
algorithms are similar. For several problems, ARC-URBB and ARC-URAPG based
on our new reformulation have some advantages on nproq. Due to the eigenvalue
calculation, four algorithms based on the convex reformulation require additional
manipulation, resulting in a larger total CPU time, evidenced by the column time,
which was also observed in [13]. The column timejoop shows that all the algorithms
have a similar CPU time if we exclude the time for computing the eigenvalues.

To investigate the numerical results more clearly, we illustrate the experiments
by performance profiles (Figs. 1, 2, 3) ( [26]). According to the performs profiles,
although ARC-GLRT has the best performance, the iteration numbers and the gra-
dient evaluation numbers of ARC-URBB and ARC-URAPG are less than 2 times of
those by ARC-GLRT on over 95% of the tests, and Hessian-vector product number of
ARC-URBB is less than 2 times of those by ARC-GLRT on about 85% of the tests.
Noting that ARC-URBB, ARC-URAPG, ARC-RBB and ARC-RAPG have the simi-
lar performance, we thus plot the performance profiles on test problems for these 4
algorithms in Figs. 4, 5 and 6. We find ARC-URAPG has the best iteration number
and gradient evaluation number, and both ARC-URBB and ARC-URAPG have better
Hessian-vector product number.

We also investigate the numerical results for all 10 implementations with different
initializations, in order to show the advantages of the new algorithms more compre-
hensively. Table 2 reports the number that ARC-URBB or ARC-URAPG outperforms
ARC-GLRT, ARC-RBB and ARC-RAPG out of the 10 realizations for each problem. It
shows our algorithms frequently outperform ARC-GLRT, ARC-RBB and ARC-RAPG
in iteration number, number of Hessian-vector products and gradient evaluations.
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Table 1 Results on the CUTEst problems

Problem Method n; Nprod ny ng neig  f* Time  Timeejg Timejoop
BROYDN7D ARC-GLRT 42.7 8289 437 356 - 242e+02 0.340 - 0.340
(1000) ARC-RBB 43.6 9469 446 363 174 2.40e+02 1.071 0.681 0.390

ARC-RAPG 43.7 9335 447 362 179 23%+02  1.100 0.701  0.399
ARC-URBB 43.8 9332 448 364 179 239%+02  1.059 0.688 0.371
ARC-URAPG 434 8458 444 359 172 239+02  1.058 0.664 0.394

BRYBND ARC-GLRT 343 15755 353 293 - 2.73e+01 0487 - 0.487
(1000) ARC-RBB 298 13143 308 257 6.5 2.73e+01 1.352 0.946 0.406
ARC-RAPG 29.8 12889 30.8 257 6.5 2.73e+01 1.426 1.005 0.421

ARC-URBB 298 12787 308 257 6.5 2.73e+01 1.349 0.956 0.394
ARC-URAPG  29.8 12621 308 257 6.5 2.73e+01 1.376 0.975 0.402
CHAINWOO ARC-GLRT  203.5 54625 2045 1527 - 1.07e+03  1.576 - 1.576
(1000) ARC-RBB 293.1 107052 294.1 2187 1725 1.17e+03 26.495 23215 3.280
ARC-RAPG 2995 106258 300.5 2254 1784 1.17e+03 27.363  23.841 3.522
ARC-URBB 2914 83633 2924 2194 168.0 1.17e+03 26276  23.553 2.723
ARC-URAPG 303.4 86835 3044 2279 1789 1.16e+03 26.534 23.434 3.099
DIXMAANF  ARC-GLRT 23.8 599.6 248 226 - 1.00e+00  0.421 - 0.421
(1500) ARC-RBB 22.1 572.6 231 212 10.1 1.00e+00  1.391 0.964 0.427
ARC-RAPG 222 5438 232 211 10.2  1.00e+00  1.391 0.969 0.423
ARC-URBB 22.6 5353 236 215 10.6 1.00e+00  1.415 1.009  0.406
ARC-URAPG 223 4772 233 212 103 1.00e+00  1.385 0.974 0412
DIXMAANG ARC-GLRT 249 606.7 259 230 - 1.00e+00 0413 - 0.413
(1500) ARC-RBB 24.6 652.8 256 226 11.0 1.00e+00  1.446 0.982 0.464
ARC-RAPG 23.7 5975 247 222 10.1 1.00e+00  1.378 0.927 0451
ARC-URBB 23.0 418.1 240 219 9.8 1.00e+00  1.270 0912 0.358
ARC-URAPG 233 4419 243 220 100 1.00e+00  1.274 0.902 0.372
DIXMAANH ARC-GLRT 29.6 680.8 30.6 259 - 1.00e+00  0.461 - 0.461
(1500) ARC-RBB 30.7 696.6 317 262 133 1.00e+00  1.705 1.186 0.519
ARC-RAPG 30.5 6644 315  26.1 13.1 1.00e+00  1.696 1.189  0.507
ARC-URBB 30.5 6253 315 260 13.1 1.00e+00  1.659 1.178  0.480
ARC-URAPG 305 619.2 315 260 134 1.00e+00  1.681 1.198  0.483

DIXMAANJ  ARC-GLRT 437 45195 447 376 - 1.00e+00 2311 - 2311
(1500) ARC-RBB 487 29529 497 424 303 1.00e+00 33.409 31.727 1.682
ARC-RAPG 51.1 33243 521 435 331 1.00e+00 37.646  35.873 1.774
ARC-URBB 50.1 29375 511 435 324 1.00e+00 35312  33.738 1.574
ARC-URAPG 492 27434 502 427 313 1.00e+00 33913 32392 1.521
DIXMAANK ARC-GLRT S51.1 48839 521 432 - 1.00e+00  2.458 - 2.458
(1500) ARC-RBB 63.1 43823 641 53.1 429 1.00e+00 40.483  38.208 2.275

ARC-RAPG 639 44535 649 533  43.8 1.00e+00 41.436 39.114 2.322
ARC-URBB 60.7 35235 61.7 515 41.1 1.00e+00 39.471  37.603 1.868
ARC-URAPG 624 39629 634 525 424 1.00e+00 40.038 37.941 2.097

@ Springer



R.Jiang et al.

Table 1 continued

Problem Method n; Nprod ng ng Neig f* Time Timeejg Timejoop
DIXMAANL ARC-GLRT 577 45695 58.7 476 - 1.00e+00 2.334 - 2.334
(1500) ARC-RBB 652 41269 662 550 409 1.00e+00  40.609 38.454 2.155

ARC-RAPG 66.0 4103.8 67.0 55.1 42.1 1.00e+00 40.438 38.255 2.183
ARC-URBB 613 3398.6 62.3 522 37.3 1.00e+00 37.372 35.571 1.801
ARC-URAPG 654 3721.6 66.4 54.6  41.3 1.00e+00 39.836 37.842 1.995
EXTROSNB ARC-GLRT 18242 54022.6 18252 12749 - 1.47e-08 16.641 — 16.641
(1000) ARC-RBB 1344.0 192873.0 1345.0 1094.9 1236.4 2.99¢e-06 72713 12.047 60.666
ARC-RAPG 1341.0 192160.7 1342.0 1097.3 1234.1 2.99e-06 71.442 11.863 59.579
ARC-URBB 1383.9 1985433 1384.9 1129.2 1276.2 2.99¢-06 73.391 12.177 61.215
ARC-URAPG 1397.9 200543.8 13989 1121.8 1291.3 2.98e-06 73.764 12.293 61.471
FLETCHCR ARC-GLRT 1969.9 425633 19709 13272 - 1.20e+00 12.710 - 12.710
(1000) ARC-RBB 1982.0 53970.1 1983.0 1357.0 774.8 1.20e+00 38.237 13.914 24.324
ARC-RAPG 1984.0 536425 1985.0 1368.1 787.8 1.20e+00 38.062 13.562 24.500
ARC-URBB 1980.8 52054.4 1981.8 1365.5 782.0 1.20e+00 38.458 14.402 24.056
ARC-URAPG 1976.8 51214.6 1977.8 1361.9 771.3 1.20e+00 38.390 14.234 24.156
FREUROTH ARC-GLRT 36.7 366.1 37.7 303 - 1.17e+05 0.302 — 0.302
(1000) ARC-RBB 338 11224 34.8 30.2 21.2 1.17e+05 0.697 0.205 0.492
ARC-RAPG 36.0 1371.1 37.0 31.6 23.5 1.17e+05 0.787 0.222 0.565
ARC-URBB 36.5 14004 37.5 30.2 24.0 1.17e+05 0.885 0.247 0.639
ARC-URAPG 348 1207.6 35.8 30.1 22.0 1.17e+05 0.810 0.219 0.591
GENHUMPS ARC-GLRT 17029 508389 1703.9 1039.5 — 8.73e-13 15912 - 15.912
(1000) ARC-RBB 15255 418374 15265 9225 9.3 7.06e-12 20.876 0.206 20.670
ARC-RAPG 15254 418414 15264 9224 9.3 8.90e-12 19.249 0.218 19.030
ARC-URBB 15255 41729.6 15265 922.6 9.3 8.34e-12 22.510 0.199 22311

ARC-URAPG 15254 417627 15264 9225 9.3 1.44e-11 21.270 0.200 21.071
GENROSE ~ ARC-GLRT 1058.6 20703.8 1059.6 711.7 — 1.00e+00 2.818 — 2.818
(500) ARC-RBB 1079.7 28236.6 1080.7 7369 166.5 1.00e+00 4.092 0.944 3.149

ARC-RAPG 11515 29887.7 11525 780.7 191.6 1.00e+00 3.594 0.863 2.732
ARC-URBB 1081.1 28124.1 1082.1 737.5 164.3 1.00e+00 3.848 0.890 2.958
ARC-URAPG 10834 27979.1 10844 737.1 169.7 1.00e+00 4.268 1.005 3.263
NONCVXU2 ARC-GLRT 655 80657 66.5 61.5 — 2.32e+03 2.083 — 2.083
(1000) ARC-RBB 127.5  7660.5 1285 122.1 1245 2.32e+03 78.082 75.564 2.518
ARC-RAPG 1224 7637.8 1234 1189 119.6 2.32e+03 77.664 75.163 2.501
ARC-URBB 1234 78459 1244 119.6 120.6 2.32e+03 78.858 76.286 2.571
ARC-URAPG 1138 72112 1148 1099 111.0 2.32e+03 71.320  69.111 2.209
NONCVXUN ARC-GLRT 300.9 224970.5 3019 2945 - 2.32e+03 49.239 - 49.239
(1000) ARC-RBB  2025.5 283403.7 2026.5 2018.8 2021.6 2.32e+03 1414.201 1346.432 67.769
ARC-RAPG 2116.6 2958379 2117.6 2109.8 2112.9 2.32e+03 1479.271 1407.690 71.581
ARC-URBB 2483.0 350646.4 2484.0 2477.1 2479.3 2.32e+03 1734.238 1650.711 83.527
ARC-URAPG 21052 294 676.3 2106.2 2098.3 2101.3 2.32e+03 1466.452 1393.276 73.176
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Table 1 continued

Problem Method nj Nprod ng ng neig  f * Time  Timegy  Timejgop
OSCIPATH  ARC-GLRT 393 60799 40.3 313 - 3.12e-01 0516 - 0.516
(500) ARC-RBB 564 5658.1 574 495 278 3.12e-01 5.502 5.204 0.298

ARC-RAPG 57.0 57475 58.0 49.6 28.1 3.12¢-01 5.702 5.348 0.354
ARC-URBB 58.7 60072 59.7 520 305 3.12¢-01  6.163 5.845 0318
ARC-URAPG 573 57992 58.3 50.8 287 3.12¢-01  5.866 5.532 0334
TOINTGSS  ARC-GLRT 19.2 118.6 20.2 141 - 1.00e+01  0.119 - 0.119
(1000) ARC-RBB 15.4 368.2 16.4 122 103 1.00e+01  0.269 0.086 0.183
ARC-RAPG 15.9 494.7 16.9 124 109 1.00e+01  0.296 0.081 0.215
ARC-URBB 15.0 3229 16.0 1.8 10.0 1.00e+01 0.233 0.076  0.156
ARC-URAPG 15.6 372.6 16.6 125 10.6  1.00e+01  0.255 0.082 0.173
TQUARTIC ARC-GLRT 63.9 282.1 64.9 529 - 2.37e-14 0363 - 0.363
(1000) ARC-RBB 71.5 838.6 72.5 55.6 6.9 1.9%-13 0.598 0.084 0513
ARC-RAPG 71.0 934.8 72.0 55.4 6.6 858e-11  0.674 0.090 0.584
ARC-URBB 71.3 566.7 72.3 55.6 6.9 1.04e-10  0.521 0.091  0.431
ARC-URAPG 72.3 926.4 73.3 56.5 6.7 3.79%-10  0.639 0.087  0.552
WOODS ARC-GLRT 2864 45426 2874 2102 - 8.66e-15  1.561 - 1.561
(1000) ARC-RBB 382.8 95748 3838 2645 6.2 1.88e-12 3.733 0.067  3.666
ARC-RAPG 381.3 94265 3823 2639 55 3.15e-14  3.340 0.051 3.288
ARC-URBB 3822 94863 3832 2642 6.1 1.67e-14  3.722 0.067  3.655
ARC-URAPG 381.7 95426 3827 264.6 63 1.67e-12  3.833 0.068  3.765

Performance profiles (iteration number)
T T T T L

1.0 T TT T T
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« 09} - ’,-—l——a- - — — ARC-RAPG |
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-% r | — — ARC-URAPG
£ o8t 'f J
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I | I,l
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< I
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© 06 r’-' B
o | l
£
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£ 04 .
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° I
EY i

/

02 1 1 1 1 1 1 1 1 1

1.0 1.2 14 1.6 1.8 2.0 22 2.4 26 2.8 3.0
Ratio to best performance,

Fig.1 Performance profiles for iteration number for ARC-GLRT, ARC-RBB, ARC-RAPG, ARC-URBB and
ARC-URAPG on the CUTEst problems
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Performance profiles (gradient evaluation number)
T T T T L L L T

o - — — ARC-GLRT |
| | [ — — ARC-RBB
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03} i

02 1 1 1 1 1 1 1 1 1
1.0 1.2 1.4 1.6 1.8 2.0 22 24 2.6 2.8 3.0

Ratio to best performance,

Fig.2 Performance profiles for gradient evaluations for ARC-GLRT, ARC-RBB, ARC-RAPG, ARC-URBB
and ARC-URAPG on the CUTEst problems

Performance profiles (Hessian-vector product number)
T T T T T T T
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Fig. 3 Performance profiles for Hessian-vector products for ARC-GLRT, ARC-RBB, ARC-RAPG,
ARC-URBB and ARC-URAPG on the CUTEst problems
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Performance profiles (iteration number)
B
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Fig.4 Performance profiles foriteration number for ARC-RBB, ARC-RAPG, ARC-URBB and ARC-URAPG

on the CUTEst problems

Performance profiles (gradient evaluation number)

1.00 7 \/ T T T
/ I / — — ARC-RBB

0.95 - f—_ — — ARC-RAPG | |
. ,/ / — — ARC-URBB
v o — — ARC-URAPG
g oo LY — .
8 ossp I .
c
] |
e ]
S 080 I | .
g /'[ |
© 075r-4 | i
2 e
3 ool I i
S |
® |
5 o650 1
£ |
8 o060l .
Qo
< /
o

055/ B

/
050 1 1 1 1 1 1 1 1 1
050 1.05 110 115 120 125 130 135 140 145

Ratio to best performance,

1.50

Fig. 5 Performance profiles for gradient evaluation for ARC-RBB, ARC-RAPG, ARC-URBB and

ARC-URAPG on the CUTEst problems
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Performance profiles (Hessian-vector product number)
T T T T T T T
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Fig. 6 Performance profiles for Hessian-vector products for ARC-RBB, ARC-RAPG, ARC-URBB and
ARC-URAPG on the CUTEst problems

6 Conclusion

In this paper, we propose a new convex reformulation for the subproblem of the
cubic regularization methods. Based on our reformulation, we propose a variant of the
non-adaptive CR algorithm that admits an iteration complexity O(e, 3 2) to find an

(eg, \/Leg) stationary point. Moreover, we show that an operation complexity bound of

our algorithm is @(e; " 4) when the subproblems are solved by Nesterov’s accelerated
gradient method and the approximated eigenvalues are computed by the Lanczos
procedure. We also propose a variant of the ARC algorithm with similar complexity
guarantees. Both of our iteration and operation complexity bounds match the best-
known bounds in the literature for algorithms that based on first- and second-order
information. Numerical experiments on the ARC equipped with our reformulation for
solving subproblems also illustrate the effectiveness of our approach.

For future research, we would like to explore if our reformulation can be extended to
solve auxiliary problems in tensor methods for unconstrained optimization ( [27-30]),
which were shown to have fast global convergence guarantees. It is well known that
the auxiliary problem in the model function in each iteration of the tensor method is
aregularized p-th-order Taylor approximation, which is difficult to solve. Two recent
works [29, 30] show that for p = 3 and convex minimization problems, the Tensor
model can be solved by an adaptive Bregman proximal gradient method, where each
subproblem is of form
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Table2 The number of times ARC-URBB (or ARC-URAPG) performs better than the other three algorithms
in 10 realizations.

Problem Index ARC-URBB ARC-URAPG
ARC-GLRT ARC-RBB ARC-RAPG ARC-GLRT ARC-RBB ARC-RAPG
BROYDN7D n; 5 2 6 4
Nprod 5 6 8 6
ng 3 3 1 4 2
BRYBND n; 10 0 0 10 0 0
Nprod 7 7 4 7 9 6
ng 10 0 0 10 0 0
CHAINWOO n; 0 5 7 0 3 5
nprod 0 10 9 0 10 9
ng 0 6 6 0 2 5
DIXMAANF  n; 7 0 2 6 1 0
Nprod 5 6 5 7 6 7
ng 6 0 1 6 2 0
DIXMAANG n; 7 5 4 6 [§ 3
nprod 10 10 9 9 10 9
ng 6 4 4 7 6 2
DIXMAANH n; 3 2 2 4 2 1
nprod 7 6 5 6 7 6
ng 4 2 2 3 2 1
DIXMAANJ  n; 1 5 5 1 5 4
nprod 10 7 7 10 9 7
ng 1 6 5 1 3 3
DIXMAANK n; 0 7 7 1 5 4
Nprod 9 7 9 8 8 7
ng 0 5 7 0 5 5
DIXMAANL n; 4 7 6 2 4 5
Nprod 8 8 8 9 7 7
ng 2 6 6 1 3 5
EXTROSNB  n; 10 3 3 10 2 3
nprod 0 3 3 0 2 3
ng 10 3 3 10 5 5
FLETCHCR n; 5 4 5 5 5 6
Nprod 4 8 8 5 9 8
ng 2 2 6 2 2 9
FREUROTH n; 5 4 4 7 3 5
nprod 0 5 7 0 4 6
ng 5 5 6 4 4 7
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Table 2 continued

Problem Index ARC-URBB ARC-URAPG

ARC-GLRT ARC-RBB ARC-RAPG ARC-GLRT ARC-RBB ARC-RAPG

GENHUMPS n 10
Nprod 10

—_
(=]

ng
GENROSE n;
Nprod
g
NONCVXU2 n;
Nprod
g
NONCVXUN n;
Nprod
g
OSCIPATH n

Nprod
ng
TOINTGSS n

—_ O O B O O = O O &N O W = W

Nprod
ng
TQUARTIC n

A A O W W W W R B BB 00D RO O

—_
S

Nprod
ng
WOODS n;j

—-

~

Nprod

(o N N e N S BN R O B S R B O R N N N N N Y N N N Y e
O O O WO W NN O 90O WO O N OO NO W =W

R e T = =L A= )T R, B N S BN BN Be I SN =R e e )
NW R RN A= O = B~ LN RO O

S O O v O~ 2

—

ng

1

mineTx + —x T Ax + —L—x[>+”, with A = 0.
x 2 3+

It will be interesting to see if the methods in [29, 30] can be extended to nonconvex

minimization problems and still have similar subproblems, and if our reformulation

can be extended to solving these subproblems.
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A Appendix
A.1 Proofs for Lemma 1

In this case, sx is approximately computed by (7) or (9). Let ¢ = L/2 for Algo-
rithm 1 and o0 = oy for Algorithm 2. Noting that dy = s, by (13), we have

gk + Hidyk + 3epdyx + o |ldilldill < €s. (A1)

Since
gk + Hidy + 3epdy + olldilldill > llgk + Hidi |l — 3eglldill — o lldell?,

we have

gk + Hidell < €5 + 3€glldill + o ldi 1> (A2)
Due to ax < Amin(Hy) + € and o > —e€fg, we have

Amin(Hk) =2 —2€E. (A3)

Using (A1), we have

gd di + d Hydy + 3eg|ldi|)® + o lldi|l? < llgk + Hidy + 3epdy + o ||dilldi]| - [l

€slldll- (A4)

NN

Then, we have

(A4)
gl di < esldill — d Hyd — 3eg|ldi]|* — o lldi |
= eslldill — (d Hidi + 3eg|ldell®) — o lldi |

43 2 3
< esldell — eglldel® — o lldill*. (AS)

By (A4), we also have

df Hidy < —gj di — 3eg|ldil> — olldell® + esldl. (A6)
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Hence, we obtain

1 o
m(dy) = g di + zdkT Hydy + §||dk||3

(A6) 1 3 , o3 1 o3
S 8k dk = 58k dk = SeElldill” = Zldill” + Seslldill + S lldk ]

1 + 3 5 1 o 3
— —oldy — 2egp|ld —eslldill — Z|id
S8l di = Sepldul + Sesldell = Tl
O Ll = C1dl? = 2ex 1 + Lesldel — el
< ce - — —2e¢ —€ - —
) Slldak ) k E Ak ) Sldk 6 k
20 3 2
=~ 1del = 2egldi + sl
or equivalently,

20 3 5
—m(dy) = ?”dk” + 2eglldi ™ — eslldill-

Dueto eg = 6%5 /L as in Condition 2, it follows that

) 2
o 3 2 €E

—m(dy) = 3 ldill” + 2eglldicll” — 2 il (A7)
Now suppose that x; +dj is not an (e, /L€ ) stationary point. We then have either

DIV f e +di) | > €gor (i) |V f O +di)ll < €g. Amin(V2f (e +di)) < —/Lég.
Let us consider the following cases (i) and (ii) separately.

(i) Using (A2), Taylor expansion for V f (x; + di) and (11), we have
L 2
IV f(xx +dioll < llgx + Hidkll + Elldkll
L
< es+3exldill + (o + Dl (A8)

where the first inequality follows from Lemma 1 in [1]. Using ||V f (xx +di) || > €,
and (A8), we obtain

L
€ < €5+ 3eplld]l + (o + 5)||dk||2.

This gives

—3eg + \/96%3 —4(c + %)(es —€g)

di|l =
Il P or
“3eg —/9¢2 —4(0 + E)(es — &)
ldill < ,
20 +L
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where the second case is discarded since ||di|| = 0. Due to €5 = e% /L and
€, = €2/L in Condition 2, we further have

—3eg + \/256% + (320‘/L)€%

diell =
ll i P

(A9)

— For Algorithm 1, due to o = L/2, (A9) yields

3
ldkll = ZGE-

Therefore, using 0 = L /2, we have

(AT) 33e;,
—md) = o

— Note that from Lemma 7, we have 0 = o, < max{oy, %} for Algorithm 2.
Therefore, if o > L/2, (A9) yields

3

ldill = €
(max{y, 20¢/L} + 1)L

Es (A10)

andif o < L/2, (A9) yields

1
ldill = <k (ALD)

Using (A9), we claim the following inequality holds,

20 €2 3¢2
el + 2eplldill — £ > =E£, Al2
3 ldi||* + 2€g|ldk |l 7 2 (A12)

provided o > 0. Now combining (A7), (A10), (A11) and (A12), we have

36% . 3 362«
—m(dy) = —=||di|| > min 1=
L max{y, 200/L} + 1 L?

Indeed, to prove inequality (A12), we only need to show, using (A9),

2(J/25 + 324 — 3)? . 2(V25+ 32 ~3) 232’ +16a +3V25 32 -9

4,
3(4a +4+1/a) 2a + 1 3 (2a + 1)2

fora = o/L > 0. Note that the above inequality is equivalent to
V(a) = 8a% — 8a + 3425+ 32a — 15 > 0.
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As ¥ (0) = 0, it suffices to show

48
/
(a) =16a — 8+ ——— >0, Ya > 0.
v V25 +32a
This holds because
V" (a) = 16 — 48 16 16(1 48 )y > 16(1 48 y>0, Va>0
= - T = - ) F —T=z) =Y ER
“ (V25 + 32a)? (V25 + 32a) 125 “

and y'(0) = £ > 0.
(i) By Assumption 1 and (A3), we have
Amin (V2 f (i + di)) > Amin(Hi) — Llldell > —2eg — Llidi]l.  (A13)

Using Amin(V2f (x¢ + di)) < —,/Lég and (A13), we obtain

~2ep — Llldi]| < —y/Leg.

This, together with eg = ,/Le, /3, implies

JLe, — 2¢

ldy )| > Y-8~ EE (Al4)
L L

It follows that

A7 20 4 , €
—m(d) > —lldill” + 2eplldil” = - dkll

(Al4) €p\ €2 (Al4) &3
> (042 (—) “E g = E
( +2ep (7 7 ) Nkl 12

Combining (i) and (ii), we complete the proof.

A.2 Proofs for Lemma 2

In this case, dy is generated by either line 13 or line 16 of Algorithm 1 (Algorithm 2,
respectively), depending on the norm of sy, returned by approximately solving (8) ((10),
respectively). Let o = L/2 for Algorithm 1 and o0 = oy for Algorithm 2. We prove
the results twofold.

(i) When o ||sk || + ox = 0, we must have [o ||s || + ax]+ = o|lsk|l + ax. Note that
Vi (sx) = gk + Hisk + e — o)si + [o[[se |l + o] 4 . (A15)
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Using (14) and dy = si, we obtain

gf di + d] Hydy + Qeg — ap)ldic|* + [0 lldi |l + oy 1]l
| gk + Hidx + 2ep — ap)di + [o lldic || + o]y dic|| - lldil (A16)

<
<es|ldrll.

Since a; < Amin(Hy) + €, we have Hy — ol + 2eg1 > 0 and thus
d{f Hydy + Qe — a)lldi > > 0. (A17)

Noting that [o [|sk |l + ] > 0, we have from (A16) and (A17) that
g di < eslldgll. (A18)

On the other hand, according to o ||s¢|| + ax = 0 and (A16), we have

df Hyd < —gj dic + (o — 2€p)ldi|l> — o lldicI® — agclldic|* + €slldi|

T 3 2 (A19)
= —gc dk — o lldk|l” — 2€E|ldk||” + eslldkll-

Since dj = s, and oy < —€g, from o ||s¢|| + o > 0 we obtain

ldell > — =% > £ (A20)
o o

We further have
1
2

(A19) 1 o 1 o
< gldi — =gl di — =il — eplldill® + sesldill + = lldel?
2 2 2 3
1 T 1 s O 3
= —g/ di + =e€slldi|l — eglldk]l* — =ld
28k k+2€SII kIl — €elldkll 6|| kl

(A18) 1 1 , O3
S geslldill + Seslidill — e lidill” — = lldll

o
dl Hydi + — lldi|1?

m(dy) = g di + 2

o
= _g||dk||3 — eglldi]® + eslidll.
This gives
o 3 2
—m(d) > £ dll® + e lldi]* = €slldll (A21)

Thus, the desired bound holds immediately for Algorithm 1.

Now consider Algorithm 2. Similar to the proof for Lemma 1, we consider two
cases |V f(x +di)ll > g, and [V £ G+ d)ll < €. Amin(V2F (e + di)) <
—,/Leg. For the latter case, similar to case (ii) in the proof of Lemma 1, from
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Lipschitz continuity of Hessian, we have ||di|| > €g/L. Then, due to €5 = e% /L
in Condition 2, we have 2¢g ||di|| — €s > 0 and thus (A21) yields

20) €

(A 3
—md) > Dl > £
6 602

Now consider the case ||V f(xx + di) || > €g, whose proof follows a similar idea
to that in Lemma 1. Since the subproblem is approximately solved, we have

Vi (di) || < €s
and thus (A15), together with o ||d || + ox = 0, gives
llgk + Hidy + 2ep — au)di + [olldill + o]y dill = llgk + Hidi + (2€g + o lldiDdill < €s.
Hence, we have
€ SV +dll < llgk + Hiell + glldkll2 < €5+ 2eg|ldi]l + (0 + %)Ildkllz-

The due to Condition 2, the above quadratic inequality gives

—2ep + \/4633 — 40+ L/2)(es —€g)  —2eg + \/206%5 +320¢€;/L

|l >
20 + L 20+ L

We claim the following inequality holds

a 2
g”dk” +egldill —es

2
~2ep +,/20¢} + 3203 /L

o
2_
6 20 + L

—2€p +,/20€% +320€2 /L 2 2
V206 E Rk (A22)

6 —_—
teE 20 + L L~ 3L

which further gives

) > —€2d WO 1 s
—m(d) 2 srepldedl > e

Indeed, (A22) is equivalent to, by defining a = o/L,
Y(a) =4av5+8a—8a+3v5+8a—52>20,
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(ii)

which holds since

ét//(a) = j% —120 < 360> +40a +9 >0 < 92a+1)*>+4a >0Va >0,
a
and ¥ (0) =35 —5> 0.
w, Hyw,
When o ||sg || + ax < 0, we have d, = %wk, ax = v Hyvg = zﬁ),j—;kk
lwrll = |ok|, and w,jgk < 0. It follows that
T [ 1 T L3
dk dek = 40_—2wk HklUk = mo{kwk Wi = mak. (A23)
Since o < —€g < 0, we also have
1 1 1
el = o lwel® = e loul’ = — e (A24)

Then, we have

1 o
m(dy) = g di + 5"; Hydy + §||dk||3

1+ 1, 1,

= 5o Sk Wk g % T 5 2%
1 3

S T2 %

where the second equality follows from (A23) and (A24), and the inequality fol-
lows from wkTgk < 0. Due to oy < —€g, we have

(dy) > ! 3> L
—m Z ——=0, 2 ——€%.
k 1202 k7 1262°F

Combining (i) and (ii) and noting ¢ = L/2 in Algorithm 1 and 0 = o} €
(0, max{og, yL/2}) (due to Lemma 7) and y > 1 in Algorithm 2, we complete
the proof.
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