
Journal of the Operations Research Society of China
https://doi.org/10.1007/s40305-022-00398-5

Cubic Regularization Methods with Second-Order
Complexity Guarantee Based on a New Subproblem
Reformulation

Ru-Jun Jiang1 · Zhi-Shuo Zhou1 · Zi-Rui Zhou2

Received: 26 June 2021 / Revised: 16 December 2021 / Accepted: 13 February 2022
© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
The cubic regularization (CR) algorithmhas attracted a lot of attentions in the literature
in recent years. We propose a new reformulation of the cubic regularization subprob-
lem. The reformulation is an unconstrained convex problem that requires computing
theminimum eigenvalue of theHessian. Then, based on this reformulation, we derive a
variant of the (non-adaptive) CR provided a known Lipschitz constant for the Hessian
and a variant of adaptive regularization with cubics (ARC). We show that the iteration
complexity of our variants matches the best-known bounds for unconstrained mini-
mization algorithms using first- and second-order information. Moreover, we show
that the operation complexity of both of our variants also matches the state-of-the-art
bounds in the literature. Numerical experiments on test problems from CUTEst col-
lection show that the ARC based on our new subproblem reformulation is comparable
to the existing algorithms.

This paper is dedicated to the late Professor Duan Li in commemoration of his contributions to
optimization, financial engineering, and risk management.

The first author is supported in part by the National Natural Foundation of China (Nos. 11801087 and
12171100).

B Ru-Jun Jiang
rjjiang@fudan.edu.cn

Zhi-Shuo Zhou
zhouzs18@fudan.edu.cn

Zi-Rui Zhou
zirui.zhou@huawei.com

1 School of Data Science, Fudan University, Shanghai 200433, China

2 Huawei Technologies Canada, Burnaby, BC, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-022-00398-5&domain=pdf
http://orcid.org/0000-0002-6610-6778

R. Jiang et al.

Keywords Cubic regularization subproblem · First-order methods · Constrained
convex optimization · Complexity analysis

Mathematics Subject Classification 65K05 · 90C26 · 90C30

1 Introduction

Consider the generic unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f : R
n → R is a twice Lipschitz continuously differentiable and possibly

nonconvex function. Recently, the cubic regularization (CR) algorithm [1, 2] or its
variants has attracted a lot of attentions for solving problem (1), due to its practical
efficiency and elegant theoretical convergence guarantees. Each iteration of the CR
solves the following subproblem

min
s∈Rn

m(s) := 1

2
s�Hs + g�s + σ

3
‖s‖3 , (CRS)

where H and g represent the Hessian and gradient of the function f at the current
iterate, respectively, ‖·‖ denotes the Euclidean l2 norm, H is an n × n symmetric
matrix (possibly non-positive semidefinite) and σ is a regularization parameter that
may be adaptive during the iterations. This model can be seen as a second-order Taylor
expansion plus a cubic regularizer that makes the next iterate not too far away from the
current iterate. It is well known that under mild conditions ([1, 2]), the CR converges
to a point satisfying the second-order necessary condition (SONC), i.e.,

∇ f (x) = 0, ∇2 f (x) � 0,

where (·) � 0 means (·) is a positive semidefinite matrix. In the literature, it is of great
interests to find a weaker condition than SONC, i.e.,

‖∇ f (x)‖ < εg, λmin(∇2 f (x)) � −εH , εg, εH > 0, (2)

where λmin(H) denotes theminimum eigenvalue for amatrix H . Condition (2) is often
said to be (εg, εH) stationary.

The CR algorithm was first considered by Griewank in an unpublished technical
report ([3]). Nesterov and Polyak [1] proposed the CR in a different perspective and
demonstrated that it takes O(ε

−3/2
g) iterations to find an (εg, ε

1/2
g) stationary point

if each subproblem is solved exactly. As in general the Lipschitz constant of the
Hessian is difficult to estimate, Cartis et al. [2, 4] proposed an adaptive version of
the CR algorithm, called the ARC (adaptive regularization with cubics), and showed

that it admits an iteration complexity boundO
(
max{ε−3/2

g , ε−3
H }

)
to find an (εg, εH)

123

Cubic Regularization Methods with Second-Order Complexity· · ·

stationary point, when the subproblems are solved inexactly and the regularization
parameter σ > 0 is chosen adaptively.

Besides iteration complexity O(ε
−3/2
g), many subsequent studies proposed vari-

ants of the CR or other second-order methods that also have an operation complexity
Õ(ε

−7/4
g) (where Õ(·) hides the logarithm factors), with high probability, for finding

an (εg, ε
1/2
g) stationary point of problem (1). Here, a unit operation can be a function

evaluation, gradient evaluation, Hessian evaluation or a matrix vector product ([5]).
Based on the CR algorithm, Agarwal et al. [6] derived an algorithm with such an
operation complexity bound, where the heart of the algorithm is a subproblem solver
that returns, with high probability, an approximate solution to the problem (CRS) in
Õ(ε

−1/4
g) operations. After that, Carmon et al. [7] proposed an accelerated gradient

method that also converges to an (εg, ε
1/2
g) stationary point with an operation com-

plexity Õ(ε
−7/4
g). Royer and Wright [8] proposed a hybrid algorithm that combines

Newton-like steps, the CG method for inexactly solving linear systems, and the Lanc-
zos procedure for approximately computing negative curvature directions, which was
shown to have an operation complexity Õ(ε

−7/4
g) to achieve an (εg, ε

1/2
g) stationary

point. Royer et al. [9] proposed a variant of Newton-CG algorithm with the same
complexity guarantee. Very recently, Curtis et al. [5] considered a variant of trust-
region Newton methods based on inexactly solving the trust-region subproblem by
the well-known “trust-region Newton-conjugate gradient” method, whose complexity
also matches the-state-of-the-art. All the above-mentioned methods [5, 7–9] converge
with high probability like [6], which is due to the use of randomized iterative methods
for approximately computing the minimum eigenvalue, e.g., the Lanczos procedure.

Despite theoretical guarantees, the practical efficiency of solving (CRS) heavily
affects the convergence of the CR algorithm. Although it is one of the most successful
algorithms for solving (CRS) in practice, the Krylov subspace method ([2]) may fail
to converge to the true solution of (CRS) in the hard case1 or close to being in the
hard case. Carmon and Duchi [10] provided the first convergence rate analysis of the
Krylov subspace method in the easy case, based on which the authors further propose
a CR algorithm with an operation complexity Õ(ε

−7/4
g) in [11]. Carmon and Duchi

[12] also showed the gradient descent method that works in both the easy and hard
cases is able to converge to the global minimizer if the step size is sufficiently small,
though the convergence rate is worse than the Krylov subspace method. Based on a
novel convex reformulation of (CRS), Jiang et al. [13] proposed an accelerated first-
order algorithm that works efficiently in practice in both the easy and hard cases, and
meanwhile enjoys theoretical guarantees of the same order with the Krylov subspace
method.

However, the methods in the literature ([1, 2, 4, 6–9, 11, 13]), either somehow
deviate the framework of the CR or ARC algorithms, and/or do not present good prac-
tical performance and an Õ(ε

−7/4
g) operation complexity simultaneously. Our goal in

this paper is to propose variants of the CR and ARC based on new subproblem refor-
mulations that achieve the state-of-the-art complexity bounds and also remain close

1 For the problem (CRS), it is said to be in the easy if the optimal solution x∗ satisfies ρ‖x∗‖ > −λmin(A),
and hard case otherwise.

123

R. Jiang et al.

to the practically efficient CR and ARC algorithms. Motivated by the reformulation
in [13], we deduce a new unconstrained convex reformulation for (CRS). Our refor-
mulation explores hidden convexity of (CRS), where similar ideas also appear in the
(generalized) trust-region subproblem ([14–17]). The main cost of the reformulation
is computing the minimum eigenvalue of the Hessian. We propose a variant of the CR
algorithmwith strong complexity guarantee.We consider themore realistic casewhere
eigenvalues of Hessians are computed inexactly. In this setting, we suppose the Lips-
chitz constant of theHessian is given as L , the parameter σ = L/2 is non-adaptive, and
each subproblem is also solved approximately. We prove that our algorithm converges
to an (εg,

√
Lεg) stationary point with an iteration complexity O(ε

−3/2
g). Moreover,

we further show that each iteration costs Õ(ε
−1/4
g) when the minimum eigenvalue of

the Hessian is inexactly computed by the Lanczos procedure, and the subproblem,
which is regularized to be strongly convex, is approximately solved by Nesterov’s
accelerated gradient method (NAG) [18] in each iteration. Combining the above facts,
we further demonstrate that our algorithm has an operation complexity Õ(ε

−7/4
g) for

finding an (εg,
√
Lεg) stationary point. Based on the reformulation, we also propose a

variant of the ARC with similar iteration and operation complexity guarantees, where
σk is adaptive in each iteration.

The remaining of this paper is organized as follows. In Sect. 2, we derive our
unconstrained convex reformulation for (CRS), describe the CR and ARC algorithms
and the basic setting, and give unified convergence analysis for sufficient decrease in
the model function in one iteration. In Sects. 3 and 4, we give convergence analysis
for the CR and ARC algorithms for finding an approximate second-order stationary
point with both iteration complexity and operation complexity bounds that match the
best-known ones, respectively. In Sect. 5, we compare numerical performance of an
ARC embedded by our reformulation with ARCs based on the existing subproblem
solvers. We conclude our paper in Sect. 6.

2 Preliminaries

The structure of this section is as follows. In Sect. 2.1, we first propose our reformu-
lation for the subproblem (CRS). Then, in Sect. 2.2, wemainly describe the framework
of our variants of the CR and ARC algorithms and also state our convergence results.
Finally, in Sect. 2.3, we give unified convergence analysis of one iteration progress
for both the CR and ARC algorithms.

2.1 A New Convex Reformulation for (CRS)

In this subsection, we introduce a new reformulation for (CRS) when λmin(H) < 0,
i.e., the minimum eigenvalue of H is negative. First, recall the reformulation proposed
in [13]:

123

Cubic Regularization Methods with Second-Order Complexity· · ·

min
s,y

g�s + 1

2
s� (H − α I) s + σ

3
y3/2 + α

2
y

s.t. y � ‖s‖2, y � α2

σ 2 ,

(3)

where α = λmin(H). However, this reformulation may be ill-conditioned and cause
numerical instability when y is small since the Hessian of the objective function for y
is σ

4 y
−1/2, which approaches infinity when y → 0. Unfortunately, this is the case for

the CR or ARC algorithms when the iteration number k becomes large. We also found
that due to this issue and that y is of the same order with ‖s‖2, CR or ARC based
on solving subproblem (3) cannot achieve the state-of-the-art operation complexity
Õ(ε

−7/4
g) for finding an (εg,

√
Lεg) stationary point. To amend this issue, we proposed

the following reformulation,

min
s,y

m̂(s, y) := g�s + 1

2
s� (H − α I) s + σ

3
y3 + α

2
y2

s.t. y � ‖s‖, y � −α

σ
,

(CRSr)

so that y is of the same order with ‖s‖.
One key observation of this paper is that (CRSr) can be simplified into a convex

problem with single variable s, by applying partial minimization on y. Note that given
any s ∈ R

n , the y-problem of (CRSr) is

min
y∈R

{σ

3
y3 + α

2
y2 : y � ‖s‖, y � −α

σ

}
,

whose optimal solution is uniquely given by

y = max
{
‖s‖,−α

σ

}
. (4)

This is because the derivative of the objective function is σ y2 + αy, satisfying

σ y2 + αy = σ y
(
y + α

σ

)
� 0,

due to the constraints y � 0 and y � − α
σ
. Substituting (4) into (CRSr), we obtain

that (CRSr) is equivalent to

min
s∈Rn

{
m̃(s) := g�s + 1

2
s�(H − α I)s + Jα,σ (s)

}
, (CRSu)

where

Jα,σ (s) = σ

3

[
max

{
‖s‖,−α

σ

}]3 + α

2

[
max

{
‖s‖,−α

σ

}]2
. (5)

123

R. Jiang et al.

In the following, we show that Jα,σ (s) is a convex and continuously differentiable
function.

Proposition 1 For any σ > 0 and α ∈ R, Jα,σ (s) is convex and continuously differ-
entiable on R

n. Moreover, we have

∇ Jα,σ (s) = [σ‖s‖ + α]+ · s, ∀ s ∈ R
n,

where [a]+ = max{a, 0} for any a ∈ R.

Proof We consider the two cases (a) α � 0 and (b) α < 0 separately.

(a) If α � 0, then by σ > 0, we have ‖s‖ � −α/σ for all s ∈ R
n . Thus, Jα,σ (s)

reduces to

Jα,σ (s) = σ

3
‖s‖3 + α

2
‖s‖2, ∀ s ∈ R

n .

It is clear that in this case Jα,σ (s) is convex and continuously differentiable, and

∇ Jα,σ (s) = σ‖s‖s + αs = (σ‖s‖ + α) · s = [σ‖s‖ + α]+ · s,

where the last equality is due to α � 0.
(b) Now we consider the case α < 0. Note that the following identity holds for any

σ > 0, α, y ∈ R:

σ

3
y3 + α

2
y2 = σ

3

(
y + α

σ

)3 − α

2

(
y + α

σ

)2 + α3

6σ 2 .

By this, we can rewrite Jα,σ (s) in (5) as

Jα,σ (s) = σ

3

[
‖s‖ + α

σ

]3
+

− α

2

[
‖s‖ + α

σ

]2
+

+ α3

6σ 2 . (6)

Note that ‖s‖ + α/σ is a convex function of s. In addition, [·]3+ and [·]2+ are both
non-decreasing convex functions. Thus, we obtain that

h1(s) :=
[
‖s‖ + α

σ

]3
+

and h2(s) :=
[
‖s‖ + α

σ

]2
+

are convex functions. This, together with α < 0 and (6), implies that Jα,σ (s) is
convex. Also, it is easy to verify that

∇h1(s) =
{
0, if ‖s‖ � − α

σ
;

3
(‖s‖ + α

σ

)2 · s
‖s‖ , if ‖s‖ > − α

σ
.

∇h2(s) =
{
0, if ‖s‖ � − α

σ
;

2
(‖s‖ + α

σ

) · s
‖s‖ , if ‖s‖ > − α

σ
.

123

Cubic Regularization Methods with Second-Order Complexity· · ·

This, together with (6), implies that

∇ Jα,σ (s) =
{
0, if ‖s‖ � − α

σ
;

(σ‖s‖ + α) · s, if ‖s‖ > − α
σ
.

It then follows that Jα,σ (s) is continuously differentiable and

∇ Jα,σ (s) = [σ‖s‖ + α]+ · s.

Combining the results in cases (a) and (b), we complete the proof.

We immediately have the following results.

Corollary 1 The m̃(s) in (CRSu) is convex and continuously differentiable, and

∇m̃(s) = g + (H − α I)s + [σ‖s‖ + α]+ s.

Moreover, if σ‖s‖ + α � 0, we have

m(s) = m̃(s) and ∇m(s) = ∇m̃(s).

2.2 Variants of the CR and the ARC Algorithms andMain Complexity Results

In this subsection, we first summarize our variants of the CR and ARC algorithms
in Algorithms 1 and 2. Note that the only difference betweenAlgorithms 1 and 2 is that
Algorithm 2 has an adaptive regularizer σk in the model function, where the Hessian
Lipschitz constant L is replaced by the adaptive parameter 2σk , and thus Algorithm 2
needs carefully choosing parameters related to σk .

Before presenting the convergence analysis, we give some general assumptions
and conditions that are widely used in the literature. We first introduce the following
assumption for the objective function, which was used in [19].

Assumption 1 The function f is twice differentiable with f ∗ = minx f (x), and has
bounded and Lipschitz continuous Hessian on the piece-wise linear path generated by
the iterates, i.e., there exists L > 0 such that

‖∇2 f (x) − ∇2 f (xk)‖ � L‖x − xk‖, ∀x ∈ [xk, xk + dk], (11)

where xk is the kth iterate and dk is the kth update. Here ‖A‖ denotes the operator
2-norm for a matrix A.

An immediate result of Assumption 1 is the following well-known cubic upper bound
for any s ∈ R

n (cf. equation (1.1) in [2])

f (xk + s) − f (xk) � g�
k s + 1

2
s�Hks + L

6
‖s‖3. (12)

123

R. Jiang et al.

Algorithm 1 A variant of the CR algorithm using reformulation (CRSu)
Require x0, εg > 0, L > 0, εE = √

Lεg/3 and εS = εg/9
1 for k = 0, 1, · · · , do
2 evaluate gk = ∇ f (xk), Hk = ∇2 f (xk),
3 compute an approximate eigenpair (αk , vk) such that αk = v�

k Hkvk � λmin(Hk) + εE
4 if ‖gk‖ � εg and αk � −2εE then
5 return xk
6 end if
7 if αk � −εE then
8 solve the regularized subproblem approximately

sk ≈ argmins∈Rn

{
mr
k (s) := g�

k s + 1

2
s�(Hk + 3εE I)s + L

6
‖s‖3

}
, (7)

9 dk = sk , xk+1 = xk + dk
10 else
11 solve the regularized subproblem approximately

sk ≈ argmins∈Rn

{
m̃r
k (s) := g�

k s + 1

2
s�(Hk − αk I + 2εE I)s + J̃k (s)

}
, (8)

where J̃k (s) = Jαk ,L/2(s)
12 if L‖sk‖ + 2αk � 0 then
13 dk = sk
14 else
15 wk = βvk such that ‖wk‖ = |αk | and w�

k gk � 0

16 dk = 1
L wk

17 end if
18 xk+1 = xk + dk
19 end if
20 end for

As in practice, it is expensive to compute the exact smallest eigenvalue, we consider
the case that the smallest eigenvalue is approximately computed. Note that in line 3
of Algorithm 1 (and line 4 of Algorithm 2), we call an approximate eigenvalue solver
to find an approximate eigenvalue αk and a unit vector vk such that

λmin(Hk) � αk = v�
k Hkvk � λmin(Hk) + εE .

To make the model function εE -strongly convex, we add 3
2εE‖sk‖2 to mk or εE‖sk‖2

to m̃k (denoted by mr
k or m̃

r
k), i.e.,

mr
k(s) := g�

k s + 1

2
s�(Hk + 3εE I)s + σ

3
‖s‖3

and

m̃r
k(s) := g�

k s + 1

2
s�(Hk − αk I + 2εE I)s + J̃k(s),

123

Cubic Regularization Methods with Second-Order Complexity· · ·

Algorithm 2 A variant of the ACR algorithm using reformulation (CRSu)
Require x0, 2 > γ > 1, 1 > η > 0, σ0 > 0, εg > 0, εE = √

Lεg/3 and εS = εg/9
1 for k = 0, 1, · · · , do
2 evaluate gk = ∇ f (xk), Hk = ∇2 f (xk),
3 compute an approximate eigenpair (αk , vk) such that αk = v�

k Hkvk � λmin(Hk) + εE
4 if ‖gk‖ � εg and αk � −2εE then
5 return xk
6 end if
7 if αk � −εE then
8 solve the regularized subproblem approximately

sk ≈ argmins∈Rn

{
mr
k (s) := g�

k s + 1

2
s�(Hk + 3εE I)s + σk

3
‖s‖3

}
, (9)

9 dk = sk
10 else
11 solve the regularized subproblem approximately

sk ≈ argmins∈Rn

{
m̃r
k (s) := g�

k s + 1

2
s�(Hk − αk I + 2εE I)s + J̃k (s)

}
, (10)

where J̃k (s) = Jαk ,σk (s)
12 if σk‖sk‖ + αk � 0 then
13 dk = sk
14 else
15 wk = βvk such that ‖wk‖ = |αk | and w�

k gk � 0,

16 dk = 1
2σk

wk

17 end if
18 end if
19 ρk = f (xk)− f (xk+dk)−mk (dk)
20 if ρk � η or αk < −εE then
21 xk+1 = xk + dk , σk+1 = σk/γ � successful iteration
22 else
23 xk+1 = xk , σk+1 = γ σk � unsuccessful iteration
24 end if
25 end for

where J̃k(s) = Jαk ,σ (s) = σ
3

[
max

{‖s‖,−αk
σ

}]3 + α
2

[
max

{‖s‖,−αk
σ

}]2. Here we
have σ = L

2 for Algorithm 1 and σ = σk for Algorithm 2. Since our reformulation is
designed for the case that the smallest eigenvalue of the Hessian is negative, we solve
mr

k(s)when the approximate smallest eigenvalue is larger than or equal to criteria−εE
and solve m̃r

k(s) otherwise.
To make algorithms more practical, we allow that the subproblems are approxi-

mately solved under certain criteria, i.e., the gradient norm of the model function is
less than or equal to εS .

Condition 1 The subproblems (7) and (9) are approximately solved such that

‖∇mr
k(sk)‖ � εS . (13)

123

R. Jiang et al.

The subproblems (8) and (10) are approximately solved such that

‖∇m̃r
k(sk)‖ � εS . (14)

Remark 1 We may also replace Condition 1 by the following stopping criteria

‖∇mr
k(sk)‖ � max

{
ζ‖sk‖2, εS

}
and ‖∇m̃r

k(sk)‖ � max
{
ζ‖sk‖2, εS

}
,

for some prescribed ζ ∈ (0, 1) where similar ideas are widely used in the literature
[2, 4, 19]. Such stopping criteria have an advantage in practice if ‖sk‖ is large. By
slightly modifying our proof, we still have an iteration complexity O(ε

−3/2
g) and an

operation complexity Õ(ε
−7/4
g).

For simplicity of analysis, we consider the following condition for both Algo-
rithms 1 and 2. We remark that the constants in the following condition may be
changed slightly and we will still have the same order of complexity bounds.

Condition 2 Set εE = 1
3

√
Lεg and εS = εg

9 = ε2E
L .

From now on, we suppose that Assumption 1 and Conditions 1 and 2 hold in
the following of this paper. Our first main result is that both Algorithms 1 and 2

find an (εg,
√
Lεg) stationary point in at most O

(
ε
−3/2
g

)
iterations (see Theorems 1

and 3). Then, we will show that under some mild assumptions (Assumptions 2 and 3),
if the eigenvalue is approximated by the Lanczos procedure and the subproblem is
approximately solved by NAG, then each iteration costs at most Õ(ε

−1/4
g) operations.

Thus, the operation complexity of Algorithm 1 is Õ(ε
−7/4
g) (see Theorem 2). Similar

results also hold for the ARC and are omitted for simplicity.

Remark 2 Our goal is to present variants of the CR and ARC that are close to their
practically efficient versions ([1, 2, 4]). Most of the existing works on the CR or ARC
do not present an operation complexity Õ(ε

−7/4
g) ([1, 2, 4, 19]), while other existing

works in the framework of the CR or ARC that prove to admit an operation complexity
Õ(ε

−7/4
g) ([6, 11]) deviate more largely form the practically efficient versions than

ours. The subproblem solver in [6] requires sophisticated parameter tuning and seems
hard to implement in practice. The iteration number of each subproblem solver in [11]
is set in advance, which may take additional cost in practice if the subproblem criteria
are early met.Moreover, both works are restricted to the case of known gradient and/or
Hessian Lipschitz constant, and they are restricted to the CR case. On the other hand,
our methods are more close to the practically efficient CR and ARC algorithms in [1,
4]. We only add an additional regularizer 3

2εE‖s‖2 or εE‖s‖2 to the original model
function in the CR or ARC, use an approximate solution as the next step in most
cases (in fact related to the easy case of the subproblem), and use a negative curvature
direction in the other case (related to the hard case).

123

Cubic Regularization Methods with Second-Order Complexity· · ·

2.3 Progress in One Iteration of theModel Function

In this subsection, we give unified analysis for the descent progress in one iteration
of the models for both the CR and ARC algorithms, which will be the heart of our
convergence analysis of iteration complexity for the CR and ARC algorithms.

Proposition 2 If Algorithm 1 terminates (at line 5) or Algorithm 2 terminates (at line
5), then the output xk is an (εg,

√
Lεg) stationary point.

Proof Note that in line 5 of either Algorithm 1 or Algorithm 2, we have ‖gk‖ � εg
and αk � −2εE . Combining αk � λmin(Hk) + εE and αk � −2εE , we obtain
λmin(Hk) � −3εE = −√

Lεg due to Condition 2. This, together with ‖gk‖ � εg ,
yields the desired result.

In the following two lemmas, we show sufficient decrease can be achieved in the
case where either αk � −εE or αk < −εE . The proofs for both lemmas defer to the
appendix.

Lemma 1 Suppose that xk+dk is not an (εg,
√
Lεg) stationary point. SupposeAssump-

tion 1 and Conditions 1 and 2 hold and αk � −εE for some iteration k. Then, for
Algorithm 1, we have

−m(dk) �
ε3E

L2 .

For Algorithm 2, we have

−m(dk) � min

{
3

max{γ, 2σ0/L} + 1
, 1

}
· ε3E

L2 .

Lemma 2 Suppose that xk+dk is not an (εg,
√
Lεg) stationary point. SupposeAssump-

tion 1 andConditions 1 and 2 and in addition 1 < γ < 2 for Algorithm 2, ifαk < −εE .
Then, for Algorithm 1, we have

−m(dk) �
ε3E

3L2 .

For Algorithm 2, we have

−m(dk) �
ε3E

3(max{2σ0, γ L})2 .

3 Convergence Analysis for the CR Algorithm

In this section, we first give iteration complexity analysis of the CR algorithm and
then study its operation complexity in the case that the subproblem is solved by Nes-
terov’s accelerated gradient method (NAG) and the approximate smallest eigenvalue

123

R. Jiang et al.

of the Hessian is computed by the Lanczos procedure. The notation in this section
follows that in Sect. 2.

We have the following theorem that gives a complexity bound that matches the
best-known bounds in the literature [1, 4, 19].

Theorem 1 Given Assumption 1 and Conditions 1 and 2, Algorithm 1 finds an

(εg,
√
Lεg) stationary point in at most O

(
ε
−3/2
g

)
iterations.

Proof First note that (12) implies f (xk + dk) − f (xk) � m(dk). Combining Propo-
sition 2, Lemmas 1 and 2 and Condition 2, and noting σ = L/2 for Algorithm 1, we
have

f (xk) − f (xk + dk) � 1

3L2 ε3E .

Adding the above inequalities from 0 to T , we have

f (x0) − f (xT) � T

3L2 ε3E .

Noting that f (x) is lower bounded from Assumption 1, we complete the proof.

Next, we give an estimation for the cost of each iteration and thus obtain the total
operation complexity. Particularly, we invoke a backtracking line search version of
NAG [18] (described in Algorithm 3) to approximately solve the subproblems (7) and
(8) in Algorithm 1. Note that the objective functionsmr

k and m̃
r
k in (7) and (8) are both

εE -strongly convex. In Algorithm 3, h stands for either mr
k or m̃

r
k .

Algorithm 3 NAG for minimizing m strongly convex smooth functions h(z)
Require h, ∇h, t0 > 0, θ0 ∈ (0, 1], β ∈ (0, 1), initial point z0 ∈ R

n

1 for l = 0, 1, · · · do
2 if l � 1 then
3 tl = tl−1, � initial step size for the lth iteration

4 γl = θ2l−1
tl−1

,

5
θ2l
tl

= (1 − θl)γl + mθl
6 end if
7 y = zl + θlγl

γl+mθl
(vl − zl) (y = z0 for l = 0),

8 zl+1 = y − tl∇h(y)

9 while h(y − tl∇h(y)) > h(y) − tl
2 ‖∇h(y)‖2 do

10 tl = βtl ,
11 zl+1 = y − tl∇h(y)
12 end while
13 vl+1 = zl + 1

θl
(zl+1 − zl)

14 end for

123

Cubic Regularization Methods with Second-Order Complexity· · ·

Assumption 2 Suppose that for any extrapolated point y, and any t ∈ (0, t0], there
exists an upper bound for ‖y − t∇h(y)‖, i.e., there exists Mn > 0 such that ‖y −
t∇h(y)‖ � Mn . Moreover, we assume

‖zl‖ � Mn, ∀ l � 0 and ‖z∗‖ � Mn,

where zl is given in Algorithm 3 and z∗ is the optimal solution of the subproblem (7)
or (8).

The above assumption is easy to meet. Indeed, zl is bounded because h(zl) is bounded
from standard analysis for NAG (e.g., equation (15)), h is strongly convex and
dom(h) = R

n , which is the case for mr
k and m̃

r
k . Meanwhile, y − t∇ f (y) is bounded,

if, noting that y is a linear combination of zl and zl−1,
θlγl

γl+mθl
and 1

θl
are bounded

constants, which is quite mild and holds in most practical cases.
We also make the following assumption that is widely used in the literature [2, 19].

Assumption 3 Suppose the Hessian Hk is bounded in each iteration of Algorithm 1,
i.e., there exists some constant MH > 0 such that

‖∇2 f (xk)‖ � MH .

The above two assumptions, together with Assumption 1, yield the following Lip-
schitz continuity result on the gradient ∇h(y).

Lemma 3 Under Assumptions 1, 2 and 3, the gradients of mr
k and m̃r

k are LS :=
2MH + 3εE + LMn Lipschitz continuous on the line path [y, y − t0∇h(y)] for any
extrapolated point y in line 7 and the line path [zl , z∗] in Algorithm 3.

Proof It suffices to show that for any p and q with ‖p‖ � Mn and ‖q‖ � Mn , we
have

‖∇h(p) − ∇h(q)‖ � LS‖p − q‖,

where h stands for either mr
k or m̃

r
k . From the definition of mr

k , we have

‖∇mr
k(p) − ∇mr

k(q)‖ =
∥∥∥∥Hk(p − q) + 3εE (p − q) + L

2
‖p‖p − L

2
‖q‖q

∥∥∥∥

� ‖Hk(p − q)‖ + 3εE‖p − q‖ + L

2
‖(‖p‖p − ‖p‖q) + (‖p‖q − ‖q‖q)‖

�
(

‖Hk‖ + 3εE + L

2
(‖p‖ + ‖q‖)

)
‖p − q‖

� (MH + 3εE + LMn)‖p − q‖,

where the last inequality follows from Assumptions 2 and 3.
To show the Lipschitz continuity of ∇m̃r

k , we need to consider three cases:

123

R. Jiang et al.

1. Both ‖p‖+ 2αk
L � 0 and ‖q‖+ 2αk

L � 0. In this case, both ∇̃mr
k(p) = ∇mr

k(p)−
εE p and ∇̃mr

k(q) = ∇mr
k(q)− εEq. With a similar analysis to the previous proof,

it is easy to show ∇̃mr
k(p) is (MH + 2εE + LMn) Lipschitz continuous.

2. Both ‖p‖+ 2αk
L � 0 and ‖q‖+ 2αk

L � 0. It is trivial to see ∇̃mr
k(p) is (MH +2εE)

Lipschitz continuous as ∇ J̃k(p) = ∇ J̃k(q) = 0.
3. Either (i) ‖p‖ + 2αk

L > 0, ‖q‖ + 2αk
L � 0 or (ii) ‖p‖ + 2αk

L � 0, ‖q‖ + 2αk
L > 0.

Due to symmetry, we only prove the first case. From Proposition 1, we have

‖∇m̃r
k(p) − ∇m̃r

k(q)‖ =
∥∥∥∥(Hk − αk I)(p − q) + 2εE (p − q) +

(
L

2
‖p‖ + αk

)
p − 0

∥∥∥∥

� ‖(Hk − αk I)(p − q)‖ + 2εE‖p − q‖ +
∥∥∥∥(

L

2
‖p‖ + αk)p

∥∥∥∥

� (2‖Hk‖ + 3εE) ‖p − q‖ +
∥∥∥∥
(
L

2
‖p‖ + αk

)
p −

(
L

2
‖q‖ + αk

)
p

∥∥∥∥

�
(
2MH + 3εE + L

2
Mn

)
‖p − q‖,

where in the second inequality we use ‖Hk − αk I‖ � 2‖Hk‖ + εE as λmin(Hk) +
εE � αk � λmin(Hk) and 2L‖q‖ + αk � 0, and the last inequality follows from
Assumptions 2 and 3.

Now let us give an estimation for the iteration complexity of Algorithm 3 to achieve
a point such that ‖∇h(zl)‖ � εS .

Lemma 4 Suppose Algorithm 3 is used as subproblem solvers for (7) and (8). Given

Conditions 1 and 2 and Assumptions 1, 2 and 3, Algorithm 3 takes at most Õ
(
ε
−1/2
E

)

iterations to achieve a point such that ‖∇h(zl)‖ � εS = ε2E
L . Moreover, the cost in

each iteration is dominated by two matrix vector products.

Proof Note that either mr
k or m̃r

k is εE -strongly convex due to the definitions, and
LS-smooth due to Lemma 3. From complexity results of NAG in [18, 20], we obtain
that

h(zl) − h∗ � �l−1
i=1(1 − √

εE ti)C, (15)

whereC =
(

(1 − θ0)(h(x0) − h∗) + θ20
2t0

‖x0 − x∗‖2
)
and ti � min{t0, β/LS}. Thus,

(15) further yields

h(zl) − h∗ �
(
1 − √

εE min{t0, β/LS}
)k−1

C .

Therefore, it takes at most T = O
(√

1
εE

log 1
εh

)
to achieve a solution such that

h(zT) − h∗ � εh .

123

Cubic Regularization Methods with Second-Order Complexity· · ·

From the LS smoothness of mr
k and m̃r

k along the line [zl , z∗] (due to Lemma 3),
we further have

1

2LS
‖∇h(zl)‖2 � h(zl) − h∗, ∀ k � 0.

Thus, by letting εh = ε2S/2LS , we have

‖∇h(zl)‖ �
√
2LSεh = εS = 1

9
εg = ε2E

L
.

Hence, the iteration complexity for ‖∇h(zT)‖ � εS isO
(√

1
εE

log 1
εE

)
= Õ

(
ε
−1/2
E

)
.

Note that each iteration of Algorithm 3 requires one gradient evaluation of ∇h(y)
according to the expression of mr

k and m̃r
k , where the most expensive operator is the

Hessian-vector product Hk y. Then, the function evaluation of h(y) is cheap if we store
Hk y. Meanwhile, to compute mk(y − tl∇h(y)) for different tl , we have

mk(y − tl∇h(y)) = g�
k y − tl g

�
k ∇h(y) + 1

2
y�Hk y − tl y

�Hk∇h(y)

+ t2l
2

∇h(y)�Hk∇h(y) + L

6
‖y − tl∇h(y)‖3,

which costsO(1) ifHk∇h(y), g�
k y, g�

k ∇h(y), y�Hk y, y�Hk∇h(y), ‖y‖, y�∇h(y)
and ‖∇h(y)‖ are provided (using ‖y − tl∇h(y)‖2 = ‖y‖2 − 2tl y�∇h(y) +
‖tl∇h(y)‖2). Note that in the lth iteration, we have t0 � tl � min{β/LS, t0}. We
thus at most do O(1) searches for β. So in one iteration, the total cost is two matrix
vectors products and O(n) other operations. With a similar analysis, the same com-
plexity result holds for m̃r

k .

The following lemma shows a well-known result that the smallest eigenvalue of a
given matrix can be computed efficiently with high probability.

Lemma 5 ([21] and Lemma 9 in [8]) Let H be a symmetric matrix satisfying ‖H‖ �
UH for someUH > 0, and λmin(H) its minimum eigenvalue. Suppose that the Lanczos
procedure is applied to find the largest eigenvalue of UH I − H starting at a random
vector distributed uniformly over the unit sphere. Then, for any ε > 0 and δ ∈ (0, 1),
there is a probability at least 1− δ that the procedure outputs a unit vector v such that

v�Hv � λmin(H) + ε in at most min

{
n,

log(n/δ2)

2
√
2

√
UH
ε

}
iterations.

Now we are ready to present the main result in this section that Algorithm 1 has an
operation complexity Õ (ε

−7/4
g).

Theorem 2 Suppose the approximate eigenpair in line 3 of Algorithm 1 is computed
by the Lanczos Procedure, and subproblems (7) and (8) are approximately solved by
Algorithm 3.Under Conditions 1 and 2 andAssumptions 1, 2 and 3, the algorithm finds
an (εg,

√
Lεg) stationary point with high probability, and in this case the operation

complexity of Algorithm 1 is Õ (ε
−7/4
g).

123

R. Jiang et al.

Proof First, note that the iteration complexity is O(ε
−3/2
g), due to Theorem 1.

At each iteration, if the subproblems are approximately solved in line 8 or 11 in
Algorithm 1, the subproblem iteration complexity is Õ(ε

−1/2
E) = Õ(ε

−1/4
g) because

that εE = √
Lεg/3, and that the dominated cost is Õ(ε

−1/4
g) matrix vector products,

thanks to Lemma 4.
Another cost at each iteration is inexactly computing the smallest eigenvalue. Note

that the failure probability of the Lanczos procedure is only in the “log factor” in the
complexity bound. Hence, for any given δ′ ∈ (0, 1), in the Lanczos procedure we
can use a very small δ like δ = δ′/T , where T is the total iteration number bounded
by O(ε

−3/2
g). Then, from the union bound, the full Algorithm 1 finds an (εg,

√
Lεg)

stationary point with probability 1−δ′. FromLemma 5, it takes Õ(ε
−1/2
E) = Õ(ε

−1/4
g)

matrix vector products to achieve an εE approximate eigenpair, with probability at least
1 − δ′.

As the iteration complexity of Algorithm 1 is O(ε
−3/2
g) and each iteration takes

Õ(ε
−1/4
g) unit operations, we conclude that the operation complexity is Õ(ε

−7/4
g).

4 Convergence Analysis for the ARC Algorithm

In this section,wefirst show that theARCalgorithmalso has an iteration complexity
O (

εg
−3/2

)
for finding an (εg,

√
Lεg) stationary point. Then, we will briefly analyze

its operation complexity in the case that the subproblem is solved by NAG and the
approximate smallest eigenvalue of theHessian is computed by theLanczos procedure.
The notation in this section follows that in Sect. 2.

To show the iteration complexity of the ARC algorithm is still O(ε
−3/2
g), the key

proof here is that we need to counter the iteration number for successful steps. Specif-
ically, we need the following lemma that shows when σk is large enough, the iteration
must be successful.

Lemma 6 Suppose Assumption 1 holds. If σk � L/2 and mk(dk) < 0, then the kth
iteration is successful.

Proof By (12) and σk � L/2, we have

f (xk + dk) − f (xk) � g�
k dk + 1

2
d�
k Hkdk + L

6
‖dk‖3

� g�
k dk + 1

2
d�
k Hkdk + σk

3
‖dk‖3

= mk(dk) < 0.

This yields ρk = f (xk)− f (xk+dk)
−mk (dk)

� 1 > η. Thus, the kth iteration is successful.

The following lemma shows that the adaptive regularizer is bounded above.

Lemma 7 Suppose Assumption 1 holds. Then, σk � max{σ0, γ L/2}, ∀k � 0.

123

Cubic Regularization Methods with Second-Order Complexity· · ·

Proof Suppose the kth iteration is the first unsuccessful iteration such that σk+1 =
γ σk � γ L/2, which implies σk � L/2. However, from Lemma 6, we know that the
kth iteration must be successful and thus σk+1 = σk/γ < σk , which is a contradiction.

Now we are ready to present our main convergence result of Algorithm 2, which is
of the same order with the best-known iteration bound ([4, 19]).

Theorem 3 Suppose thatAssumption1andConditions1and2hold, andmax{σ0
L ,

γ
2 } �

1. Then, Algorithm 2 takes T � O(ε
−3/2
g) iterations to find an (εg,

√
Lεg) stationary

point.

Proof Note that

T = |S| + |U |, (16)

where S is the index set of successful iterations and U is the index set of unsuccessful
iterations. Here, |A| denotes the cardinality of a set A. Since σT = σ0γ

|U |−|S| and
σT � max{σ0, γ L/2} due to Lemma 7, we have

|U | � max

{
0, logγ

(
γ L

2σ0

)}
+ |S|. (17)

Note also that S = S1 ∪ S2, where

S1 := {k ∈ S : ‖∇ f (xk + dk)‖ � εg and λmin(Hk+1) � −√
Lεg},

S2 := S \ S1.

Now we have

f (x0) − f ∗ �
∞∑
k=0

f (xk) − f (xk+1) =
∑
k∈S

f (xk) − f (xk+1)

�
∑
k∈S2

f (xk) − f (xk+1)

�
∑
k∈S2

−ηmk(dk)

�
∑
k∈S2

ηmin

{
3

max{γ, 2σ0/L} + 1
, 1,

1

3(max{2σ0/L, γ })2
}

· ε3E

L2

where the fifth inequality follows from Lemmas 1 and 2. This, together with εE =√
Lεg/3, gives

|S2| � O(ε
−3/2
g).

123

R. Jiang et al.

It is obvious that |S1| = 1 as the algorithm terminates in one iteration. Then, we have

|S| = |S1| + |S2| � O
(
ε
−3/2
g

)
.

This, together with (16) and (17), gives T � O(ε
−3/2
g).

In fact, with a similar analysis to Sect. 3, we can show that the operation com-
plexity for Algorithm 2 is still Õ(ε

−7/4
g) to find an (εg,

√
Lεg) stationary point under

mild conditions with high probability, if NAG and the Lanczos procedure are used in
each iteration. This is because the matrix vector product number in each iteration of
Algorithm 2 is still Õ(ε

−1/4
g). Two key observations for proving the Õ(ε

−1/4
g) bound

of NAG are that σk is upper bounded by constants as shown in Theorem 3, and that
the subproblems are still εE -strongly convex and Lipschitz smooth. The Lipschitz
smoothness follows from a similar technique with Lemma 3 under Assumptions 2
and 3.

5 Numerical Experiments

This sectionmainly shows the effects of our new subproblem reformulationwithout
the additional regularizer εE‖s‖2 for the ARC algorithm. We did numerical experi-
ments among ARC algorithms ([2]) with different subproblem solvers and compared
their performance. We point out that we do not directly implement Algorithm 2 since
it is practically inefficient if we compute the minimum eigenvalue of the Hessian at
every iteration. Particularly, in Algorithm 4, we only call a subproblem solver based
on reformulation (CRSu) if a prescribed condition is met.

Let f denote the objective function, gk denote the gradient ∇ f (xk) and Hk denote
the Hessian ∇2 f (xk). In Algorithm 4, we use the Cauchy point sCk (as in [2]) as the
initial point of the subproblem solver in each iteration:

sCk = −αC
k gk and αC

k = argmin
α∈R+

mk(−αgk),

which is obtained by globally minimizing mk(s) = gsk + s�Hks + σk
3 ‖s‖3 along the

current negative gradient direction. Let A denote an arbitrary solver for (CRS), Ar

denote an arbitrary solver for the constrained reformulation (CRSr) andAu denote an
arbitrary solver for the unconstrained reformulation (CRSu). Because the subproblem
solver Au (or Ar) are designed for cases where Hk is not positive semidefinite, and
the Cauchy point is a good initial point when the norm of the gradient is large, we call
the solver Au (or Ar) if the following condition is met:

‖gk‖ � max (f (xk), 1) · ε1 and λmin(Hk) < −ε2, (18)

where ε1 and ε2 are some small positive real numbers and λmin(Hk) is the minimum
eigenvalue of Hk . If condition (18) is not met, we call A to solve the model function

123

Cubic Regularization Methods with Second-Order Complexity· · ·

directly. We only accept the (approximate) solution sk if mk(sk) is smaller than that
mk(sCk); otherwise the Cauchy point sCk is used. This guarantees that Algorithm 4
converges to a first-order stationary point under mild conditions ([2,Lemma 2.1]).

Algorithm 4 ARC using convex reformulation
Require x0, γ2 � γ1 > 1, 1 > η2 � η1 > 0, and σ0 > 0 for k = 0, 1, · · · until convergence
1 compute the Cauchy point sCk
2 if condition (18) is satisfied then
3 compute a trial step s̄k using Au (orAr) with an initial point sCk
4 else
5 compute a trial step s̄k using A with an initial point sCk
6 end if
7 set

sk =
{
s̄k , if mk (s̄k) � mk (s

C
k);

sCk , otherwise.

8 compute f (xk + sk) and

ρk = f (xk) − f (xk + sk)

−mk (sk)
,

9 set

xk+1 =
{
xk + sk , if ρk � η1;
xk , otherwise.

10 set

σk+1 ∈
⎧⎨
⎩

(0, σk
]
, if ρk > η2; (very successful iteration)[

σk , γ1σk
]
, if η1 � ρk � η2; (successful iteration)[

γ1σk , γ2σk
]
, otherwise. (unsuccessful iteration)

We experimented with two subproblem solvers Au for Algorithm 4. The first one
is the gradient method with Barzilai–Borwein step size ([22]) and the second one is
NAG (here we denote it by APG to keep consistent with [13]). More specifically, in
our implementation, if condition (18) is not satisfied, we still solve (CRS) by BBM;
otherwise we implement BBM or APG to solve the unconstrained problem (CRSu).
The former is termed ARC-URBB, while the latter is termed ARC-URAPG. We com-
pare our algorithms to the ARC algorithm in [2], denoted by ARC-GLRT, in which
the subproblems are solved by the generalized Lanczos method. Besides, we also
implement Algorithm 4 with two different subproblem solvers Ar in [13], denoted
by ARC-RBB and ARC-RAPG, in which the subproblems are reformulated as (CRSr)
and solved by BBM and APG, respectively.

We implemented all the ARC algorithms in MATLAB R2017a on a Macbook Pro
laptopwith 4 Intel i5 cores (1.4GHz) and 8GBofRAM.The implementations are based
on 20 medium-size (n ∈ [500, 1500]) problems from the CUTEst collections ([23]) as
in [13], where condition (18) is satisfied in at least one iteration in our new algorithm.
For condition (18), we set ε1 = 10−2 and ε2 = 10−4. Other parameters in ARC

123

R. Jiang et al.

are chosen as described in [2]. All the subproblem solvers use the same eigenvalue
tolerance, stopping criteria, and initialization as in [13]. ForBBMs, a simple line search
rule is used to guarantee the decrease in the objective function values. For APGs, a
well-known restarting strategy ([24, 25]) is used to speed up the algorithm.

The numerical results are reported in Table 1. The first column indicates the name
of the problem instance with its dimension. The column f ∗, ni , nprod , n f , ng and
neig show the final objective value, the iteration number, number of Hessian-vector
products, number of function evaluations, number of gradient evaluations and the
number of eigenvalue computations. The columns time, timeeig and timeloop, show in
seconds the overall CPU time, eigenvalue computation time and difference between the
last two, respectively. Each value is an average of 10 realizations with different initial
points. Table 1 shows that with the same stopping criteria, all algorithms return the
same objective function value on 18 of the problems, except ARC-RAPG, ARC-URBB
and ARC-URAPG on the problem BROYDN7D with a lower final objective function
value, and ARC-GLRT on the problem CHAINWOO with a lower final objective
function value. Table 1 also shows the quantities ni , nprod, n f and ng of the five
algorithms are similar. For several problems, ARC-URBB and ARC-URAPG based
on our new reformulation have some advantages on nprod. Due to the eigenvalue
calculation, four algorithms based on the convex reformulation require additional
manipulation, resulting in a larger total CPU time, evidenced by the column time,
which was also observed in [13]. The column timeloop shows that all the algorithms
have a similar CPU time if we exclude the time for computing the eigenvalues.

To investigate the numerical results more clearly, we illustrate the experiments
by performance profiles (Figs. 1, 2, 3) ([26]). According to the performs profiles,
although ARC-GLRT has the best performance, the iteration numbers and the gra-
dient evaluation numbers of ARC-URBB and ARC-URAPG are less than 2 times of
those by ARC-GLRT on over 95% of the tests, and Hessian-vector product number of
ARC-URBB is less than 2 times of those by ARC-GLRT on about 85% of the tests.
Noting that ARC-URBB, ARC-URAPG, ARC-RBB and ARC-RAPG have the simi-
lar performance, we thus plot the performance profiles on test problems for these 4
algorithms in Figs. 4, 5 and 6. We find ARC-URAPG has the best iteration number
and gradient evaluation number, and both ARC-URBB and ARC-URAPG have better
Hessian-vector product number.

We also investigate the numerical results for all 10 implementations with different
initializations, in order to show the advantages of the new algorithms more compre-
hensively. Table 2 reports the number that ARC-URBB or ARC-URAPG outperforms
ARC-GLRT, ARC-RBB and ARC-RAPG out of the 10 realizations for each problem. It
shows our algorithms frequently outperform ARC-GLRT, ARC-RBB and ARC-RAPG
in iteration number, number of Hessian-vector products and gradient evaluations.

123

Cubic Regularization Methods with Second-Order Complexity· · ·

Table 1 Results on the CUTEst problems

Problem Method ni nprod n f ng neig f ∗ Time Timeeig Timeloop

BROYDN7D ARC-GLRT 42.7 828.9 43.7 35.6 – 2.42e+02 0.340 – 0.340

(1000) ARC-RBB 43.6 946.9 44.6 36.3 17.4 2.40e+02 1.071 0.681 0.390

ARC-RAPG 43.7 933.5 44.7 36.2 17.9 2.39e+02 1.100 0.701 0.399

ARC-URBB 43.8 933.2 44.8 36.4 17.9 2.39e+02 1.059 0.688 0.371

ARC-URAPG 43.4 845.8 44.4 35.9 17.2 2.39e+02 1.058 0.664 0.394

BRYBND ARC-GLRT 34.3 1 575.5 35.3 29.3 – 2.73e+01 0.487 – 0.487

(1000) ARC-RBB 29.8 1 314.3 30.8 25.7 6.5 2.73e+01 1.352 0.946 0.406

ARC-RAPG 29.8 1 288.9 30.8 25.7 6.5 2.73e+01 1.426 1.005 0.421

ARC-URBB 29.8 1 278.7 30.8 25.7 6.5 2.73e+01 1.349 0.956 0.394

ARC-URAPG 29.8 1 262.1 30.8 25.7 6.5 2.73e+01 1.376 0.975 0.402

CHAINWOO ARC-GLRT 203.5 5 462.5 204.5 152.7 – 1.07e+03 1.576 – 1.576

(1000) ARC-RBB 293.1 10 705.2 294.1 218.7 172.5 1.17e+03 26.495 23.215 3.280

ARC-RAPG 299.5 10 625.8 300.5 225.4 178.4 1.17e+03 27.363 23.841 3.522

ARC-URBB 291.4 8 363.3 292.4 219.4 168.0 1.17e+03 26.276 23.553 2.723

ARC-URAPG 303.4 8 683.5 304.4 227.9 178.9 1.16e+03 26.534 23.434 3.099

DIXMAANF ARC-GLRT 23.8 599.6 24.8 22.6 – 1.00e+00 0.421 – 0.421

(1500) ARC-RBB 22.1 572.6 23.1 21.2 10.1 1.00e+00 1.391 0.964 0.427

ARC-RAPG 22.2 543.8 23.2 21.1 10.2 1.00e+00 1.391 0.969 0.423

ARC-URBB 22.6 535.3 23.6 21.5 10.6 1.00e+00 1.415 1.009 0.406

ARC-URAPG 22.3 477.2 23.3 21.2 10.3 1.00e+00 1.385 0.974 0.412

DIXMAANG ARC-GLRT 24.9 606.7 25.9 23.0 – 1.00e+00 0.413 – 0.413

(1500) ARC-RBB 24.6 652.8 25.6 22.6 11.0 1.00e+00 1.446 0.982 0.464

ARC-RAPG 23.7 597.5 24.7 22.2 10.1 1.00e+00 1.378 0.927 0.451

ARC-URBB 23.0 418.1 24.0 21.9 9.8 1.00e+00 1.270 0.912 0.358

ARC-URAPG 23.3 441.9 24.3 22.0 10.0 1.00e+00 1.274 0.902 0.372

DIXMAANH ARC-GLRT 29.6 680.8 30.6 25.9 – 1.00e+00 0.461 – 0.461

(1500) ARC-RBB 30.7 696.6 31.7 26.2 13.3 1.00e+00 1.705 1.186 0.519

ARC-RAPG 30.5 664.4 31.5 26.1 13.1 1.00e+00 1.696 1.189 0.507

ARC-URBB 30.5 625.3 31.5 26.0 13.1 1.00e+00 1.659 1.178 0.480

ARC-URAPG 30.5 619.2 31.5 26.0 13.4 1.00e+00 1.681 1.198 0.483

DIXMAANJ ARC-GLRT 43.7 4 519.5 44.7 37.6 – 1.00e+00 2.311 – 2.311

(1500) ARC-RBB 48.7 2 952.9 49.7 42.4 30.3 1.00e+00 33.409 31.727 1.682

ARC-RAPG 51.1 3 324.3 52.1 43.5 33.1 1.00e+00 37.646 35.873 1.774

ARC-URBB 50.1 2 937.5 51.1 43.5 32.4 1.00e+00 35.312 33.738 1.574

ARC-URAPG 49.2 2 743.4 50.2 42.7 31.3 1.00e+00 33.913 32.392 1.521

DIXMAANK ARC-GLRT 51.1 4 883.9 52.1 43.2 – 1.00e+00 2.458 – 2.458

(1500) ARC-RBB 63.1 4 382.3 64.1 53.1 42.9 1.00e+00 40.483 38.208 2.275

ARC-RAPG 63.9 4 453.5 64.9 53.3 43.8 1.00e+00 41.436 39.114 2.322

ARC-URBB 60.7 3 523.5 61.7 51.5 41.1 1.00e+00 39.471 37.603 1.868

ARC-URAPG 62.4 3 962.9 63.4 52.5 42.4 1.00e+00 40.038 37.941 2.097

123

R. Jiang et al.

Table 1 continued

Problem Method ni nprod n f ng neig f ∗ Time Timeeig Timeloop

DIXMAANL ARC-GLRT 57.7 4 569.5 58.7 47.6 – 1.00e+00 2.334 – 2.334

(1500) ARC-RBB 65.2 4 126.9 66.2 55.0 40.9 1.00e+00 40.609 38.454 2.155

ARC-RAPG 66.0 4 103.8 67.0 55.1 42.1 1.00e+00 40.438 38.255 2.183

ARC-URBB 61.3 3 398.6 62.3 52.2 37.3 1.00e+00 37.372 35.571 1.801

ARC-URAPG 65.4 3 721.6 66.4 54.6 41.3 1.00e+00 39.836 37.842 1.995

EXTROSNB ARC-GLRT 1 824.2 54 022.6 1 825.2 1 274.9 – 1.47e-08 16.641 – 16.641

(1000) ARC-RBB 1 344.0 192 873.0 1 345.0 1 094.9 1 236.4 2.99e-06 72.713 12.047 60.666

ARC-RAPG 1 341.0 192 160.7 1 342.0 1 097.3 1 234.1 2.99e-06 71.442 11.863 59.579

ARC-URBB 1 383.9 198 543.3 1 384.9 1 129.2 1 276.2 2.99e-06 73.391 12.177 61.215

ARC-URAPG 1 397.9 200 543.8 1 398.9 1 121.8 1 291.3 2.98e-06 73.764 12.293 61.471

FLETCHCR ARC-GLRT 1 969.9 42 563.3 1 970.9 1 327.2 – 1.20e+00 12.710 – 12.710

(1000) ARC-RBB 1 982.0 53 970.1 1 983.0 1 357.0 774.8 1.20e+00 38.237 13.914 24.324

ARC-RAPG 1 984.0 53 642.5 1 985.0 1 368.1 787.8 1.20e+00 38.062 13.562 24.500

ARC-URBB 1 980.8 52 054.4 1 981.8 1 365.5 782.0 1.20e+00 38.458 14.402 24.056

ARC-URAPG 1 976.8 51 214.6 1 977.8 1 361.9 771.3 1.20e+00 38.390 14.234 24.156

FREUROTH ARC-GLRT 36.7 366.1 37.7 30.3 – 1.17e+05 0.302 – 0.302

(1000) ARC-RBB 33.8 1 122.4 34.8 30.2 21.2 1.17e+05 0.697 0.205 0.492

ARC-RAPG 36.0 1 371.1 37.0 31.6 23.5 1.17e+05 0.787 0.222 0.565

ARC-URBB 36.5 1 400.4 37.5 30.2 24.0 1.17e+05 0.885 0.247 0.639

ARC-URAPG 34.8 1 207.6 35.8 30.1 22.0 1.17e+05 0.810 0.219 0.591

GENHUMPS ARC-GLRT 1 702.9 50 838.9 1 703.9 1 039.5 – 8.73e-13 15.912 – 15.912

(1000) ARC-RBB 1 525.5 41 837.4 1 526.5 922.5 9.3 7.06e-12 20.876 0.206 20.670

ARC-RAPG 1525.4 41 841.4 1 526.4 922.4 9.3 8.90e-12 19.249 0.218 19.030

ARC-URBB 1 525.5 41 729.6 1 526.5 922.6 9.3 8.34e-12 22.510 0.199 22.311

ARC-URAPG 1 525.4 41 762.7 1 526.4 922.5 9.3 1.44e-11 21.270 0.200 21.071

GENROSE ARC-GLRT 1 058.6 20 703.8 1 059.6 711.7 – 1.00e+00 2.818 – 2.818

(500) ARC-RBB 1 079.7 28 236.6 1 080.7 736.9 166.5 1.00e+00 4.092 0.944 3.149

ARC-RAPG 1 151.5 29 887.7 1 152.5 780.7 191.6 1.00e+00 3.594 0.863 2.732

ARC-URBB 1 081.1 28 124.1 1 082.1 737.5 164.3 1.00e+00 3.848 0.890 2.958

ARC-URAPG 1 083.4 27 979.1 1 084.4 737.1 169.7 1.00e+00 4.268 1.005 3.263

NONCVXU2 ARC-GLRT 65.5 8 065.7 66.5 61.5 – 2.32e+03 2.083 – 2.083

(1000) ARC-RBB 127.5 7 660.5 128.5 122.1 124.5 2.32e+03 78.082 75.564 2.518

ARC-RAPG 122.4 7 637.8 123.4 118.9 119.6 2.32e+03 77.664 75.163 2.501

ARC-URBB 123.4 7 845.9 124.4 119.6 120.6 2.32e+03 78.858 76.286 2.571

ARC-URAPG 113.8 7 211.2 114.8 109.9 111.0 2.32e+03 71.320 69.111 2.209

NONCVXUN ARC-GLRT 300.9 224 970.5 301.9 294.5 – 2.32e+03 49.239 – 49.239

(1000) ARC-RBB 2 025.5 283 403.7 2 026.5 2 018.8 2 021.6 2.32e+03 1 414.201 1 346.432 67.769

ARC-RAPG 2 116.6 295 837.9 2 117.6 2 109.8 2 112.9 2.32e+03 1 479.271 1 407.690 71.581

ARC-URBB 2 483.0 350 646.4 2 484.0 2 477.1 2 479.3 2.32e+03 1 734.238 1 650.711 83.527

ARC-URAPG 2 105.2 294 676.3 2 106.2 2 098.3 2 101.3 2.32e+03 1 466.452 1 393.276 73.176

123

Cubic Regularization Methods with Second-Order Complexity· · ·

Table 1 continued

Problem Method ni nprod n f ng neig f ∗ Time Timeeig Timeloop

OSCIPATH ARC-GLRT 39.3 6 079.9 40.3 31.3 – 3.12e-01 0.516 – 0.516

(500) ARC-RBB 56.4 5 658.1 57.4 49.5 27.8 3.12e-01 5.502 5.204 0.298

ARC-RAPG 57.0 5 747.5 58.0 49.6 28.1 3.12e-01 5.702 5.348 0.354

ARC-URBB 58.7 6 007.2 59.7 52.0 30.5 3.12e-01 6.163 5.845 0.318

ARC-URAPG 57.3 5 799.2 58.3 50.8 28.7 3.12e-01 5.866 5.532 0.334

TOINTGSS ARC-GLRT 19.2 118.6 20.2 14.1 – 1.00e+01 0.119 – 0.119

(1000) ARC-RBB 15.4 368.2 16.4 12.2 10.3 1.00e+01 0.269 0.086 0.183

ARC-RAPG 15.9 494.7 16.9 12.4 10.9 1.00e+01 0.296 0.081 0.215

ARC-URBB 15.0 322.9 16.0 11.8 10.0 1.00e+01 0.233 0.076 0.156

ARC-URAPG 15.6 372.6 16.6 12.5 10.6 1.00e+01 0.255 0.082 0.173

TQUARTIC ARC-GLRT 63.9 282.1 64.9 52.9 – 2.37e-14 0.363 – 0.363

(1000) ARC-RBB 71.5 838.6 72.5 55.6 6.9 1.99e-13 0.598 0.084 0.513

ARC-RAPG 71.0 934.8 72.0 55.4 6.6 8.58e-11 0.674 0.090 0.584

ARC-URBB 71.3 566.7 72.3 55.6 6.9 1.04e-10 0.521 0.091 0.431

ARC-URAPG 72.3 926.4 73.3 56.5 6.7 3.79e-10 0.639 0.087 0.552

WOODS ARC-GLRT 286.4 4 542.6 287.4 210.2 – 8.66e-15 1.561 – 1.561

(1000) ARC-RBB 382.8 9 574.8 383.8 264.5 6.2 1.88e-12 3.733 0.067 3.666

ARC-RAPG 381.3 9 426.5 382.3 263.9 5.5 3.15e-14 3.340 0.051 3.288

ARC-URBB 382.2 9 486.3 383.2 264.2 6.1 1.67e-14 3.722 0.067 3.655

ARC-URAPG 381.7 9 542.6 382.7 264.6 6.3 1.67e-12 3.833 0.068 3.765

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Ratio to best performance,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

of
 a

ch
ie

vi
ng

 a
 (p

er
fo

rm
an

ce
) r

at
io

Performance profiles (iteration number)

ARC-GLRT
ARC-RBB
ARC-RAPG
ARC-URBB
ARC-URAPG

Fig. 1 Performance profiles for iteration number for ARC-GLRT, ARC-RBB, ARC-RAPG, ARC-URBB and
ARC-URAPG on the CUTEst problems

123

R. Jiang et al.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Ratio to best performance,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

of
 a

ch
ie

vi
ng

 a
 (p

er
fo

rm
an

ce
) r

at
io

Performance profiles (gradient evaluation number)

ARC-GLRT
ARC-RBB
ARC-RAPG
ARC-URBB
ARC-URAPG

Fig. 2 Performance profiles for gradient evaluations for ARC-GLRT, ARC-RBB, ARC-RAPG, ARC-URBB
and ARC-URAPG on the CUTEst problems

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Ratio to best performance,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.00

P
ro

ba
bi

lit
y

of
 a

ch
ie

vi
ng

 a
 (p

er
fo

rm
an

ce
) r

at
io

Performance profiles (Hessian-vector product number)

ARC-GLRT
ARC-RBB
ARC-RAPG
ARC-URBB
ARC-URAPG

Fig. 3 Performance profiles for Hessian-vector products for ARC-GLRT, ARC-RBB, ARC-RAPG,
ARC-URBB and ARC-URAPG on the CUTEst problems

123

Cubic Regularization Methods with Second-Order Complexity· · ·

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

Ratio to best performance,

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

of
 a

ch
ie

vi
ng

 a
 (p

er
fo

rm
an

ce
) r

at
io

Performance profiles (iteration number)

ARC-RBB
ARC-RAPG
ARC-URBB
ARC-URAPG

Fig. 4 Performance profiles for iteration number for ARC-RBB,ARC-RAPG,ARC-URBB and ARC-URAPG
on the CUTEst problems

0.50 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

Ratio to best performance,

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
ro

ba
bi

lit
y

of
 a

ch
ie

vi
ng

 a
 (p

er
fo

rm
an

ce
) r

at
io

Performance profiles (gradient evaluation number)

ARC-RBB
ARC-RAPG
ARC-URBB
ARC-URAPG

Fig. 5 Performance profiles for gradient evaluation for ARC-RBB, ARC-RAPG, ARC-URBB and
ARC-URAPG on the CUTEst problems

123

R. Jiang et al.

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50

Ratio to best performance,

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

of
 a

ch
ie

vi
ng

 a
 (p

er
fo

rm
an

ce
) r

at
io

Performance profiles (Hessian-vector product number)

ARC-RBB
ARC-RAPG
ARC-URBB
ARC-URAPG

Fig. 6 Performance profiles for Hessian-vector products for ARC-RBB, ARC-RAPG, ARC-URBB and
ARC-URAPG on the CUTEst problems

6 Conclusion

In this paper, we propose a new convex reformulation for the subproblem of the
cubic regularization methods. Based on our reformulation, we propose a variant of the
non-adaptive CR algorithm that admits an iteration complexity O(ε

−3/2
g) to find an

(εg,
√
Lεg) stationary point.Moreover,we show that an operation complexity boundof

our algorithm is Õ(ε
−7/4
g)when the subproblems are solved by Nesterov’s accelerated

gradient method and the approximated eigenvalues are computed by the Lanczos
procedure. We also propose a variant of the ARC algorithm with similar complexity
guarantees. Both of our iteration and operation complexity bounds match the best-
known bounds in the literature for algorithms that based on first- and second-order
information. Numerical experiments on the ARC equipped with our reformulation for
solving subproblems also illustrate the effectiveness of our approach.

For future research, wewould like to explore if our reformulation can be extended to
solve auxiliary problems in tensor methods for unconstrained optimization ([27–30]),
which were shown to have fast global convergence guarantees. It is well known that
the auxiliary problem in the model function in each iteration of the tensor method is
a regularized p-th-order Taylor approximation, which is difficult to solve. Two recent
works [29, 30] show that for p = 3 and convex minimization problems, the Tensor
model can be solved by an adaptive Bregman proximal gradient method, where each
subproblem is of form

123

Cubic Regularization Methods with Second-Order Complexity· · ·

Table 2 The number of times ARC-URBB (or ARC-URAPG) performs better than the other three algorithms
in 10 realizations.

Problem Index ARC-URBB ARC-URAPG

ARC-GLRT ARC-RBB ARC-RAPG ARC-GLRT ARC-RBB ARC-RAPG

BROYDN7D ni 4 5 2 4 6 4

nprod 4 5 6 5 8 6

ng 3 3 1 4 4 2

BRYBND ni 10 0 0 10 0 0

nprod 7 7 4 7 9 6

ng 10 0 0 10 0 0

CHAINWOO ni 0 5 7 0 3 5

nprod 0 10 9 0 10 9

ng 0 6 6 0 2 5

DIXMAANF ni 7 0 2 6 1 0

nprod 5 6 5 7 6 7

ng 6 0 1 6 2 0

DIXMAANG ni 7 5 4 6 6 3

nprod 10 10 9 9 10 9

ng 6 4 4 7 6 2

DIXMAANH ni 3 2 2 4 2 1

nprod 7 6 5 6 7 6

ng 4 2 2 3 2 1

DIXMAANJ ni 1 5 5 1 5 4

nprod 10 7 7 10 9 7

ng 1 6 5 1 3 3

DIXMAANK ni 0 7 7 1 5 4

nprod 9 7 9 8 8 7

ng 0 5 7 0 5 5

DIXMAANL ni 4 7 6 2 4 5

nprod 8 8 8 9 7 7

ng 2 6 6 1 3 5

EXTROSNB ni 10 3 3 10 2 3

nprod 0 3 3 0 2 3

ng 10 3 3 10 5 5

FLETCHCR ni 5 4 5 5 5 6

nprod 4 8 8 5 9 8

ng 2 2 6 2 2 9

FREUROTH ni 5 4 4 7 3 5

nprod 0 5 7 0 4 6

ng 5 5 6 4 4 7

123

R. Jiang et al.

Table 2 continued

Problem Index ARC-URBB ARC-URAPG

ARC-GLRT ARC-RBB ARC-RAPG ARC-GLRT ARC-RBB ARC-RAPG

GENHUMPS ni 10 1 0 10 2 0

nprod 10 7 8 10 7 7

ng 10 0 0 10 1 0

GENROSE ni 3 5 4 3 4 4

nprod 1 5 5 1 6 5

ng 3 4 6 3 5 5

NONCVXU2 ni 0 7 6 0 9 7

nprod 6 4 6 7 8 6

ng 0 5 6 0 8 7

NONCVXUN ni 0 4 4 0 7 5

nprod 1 4 4 2 7 5

ng 0 4 4 0 7 5

OSCIPATH ni 0 4 3 0 4 5

nprod 5 4 3 5 4 5

ng 0 3 3 0 5 4

TOINTGSS ni 6 1 3 7 1 1

nprod 1 5 9 0 6 9

ng 7 2 4 7 2 1

TQUARTIC ni 4 3 4 3 4 4

nprod 0 9 10 0 4 7

ng 5 3 4 3 4 4

WOODS ni 0 6 1 0 4 4

nprod 0 6 4 0 6 3

ng 0 6 1 0 4 2

min
x

c�x + 1

2
x�Ax + γ

3 + ν
‖x‖3+ν, with A � 0.

It will be interesting to see if the methods in [29, 30] can be extended to nonconvex
minimization problems and still have similar subproblems, and if our reformulation
can be extended to solving these subproblems.

Acknowledgements The first and third authors would like to thank Professor Duan Li, for his advice, help
and encouragement during their Ph.D. and postdoctoral time in the Chinese University of Hong Kong. All
the authors extend our thanks to the two anonymous referees for the invaluable comments that improve the
quality of the paper significantly.

123

Cubic Regularization Methods with Second-Order Complexity· · ·

A Appendix

A.1 Proofs for Lemma 1

In this case, sk is approximately computed by (7) or (9). Let σ = L/2 for Algo-
rithm 1 and σ = σk for Algorithm 2. Noting that dk = sk , by (13), we have

‖gk + Hkdk + 3εEdk + σ‖dk‖dk‖ � εS . (A1)

Since

‖gk + Hkdk + 3εEdk + σ‖dk‖dk‖ � ‖gk + Hkdk‖ − 3εE‖dk‖ − σ‖dk‖2,

we have

‖gk + Hkdk‖ � εS + 3εE‖dk‖ + σ‖dk‖2. (A2)

Due to αk � λmin(Hk) + εE and αk � −εE , we have

λmin(Hk) � −2εE . (A3)

Using (A1), we have

g�
k dk + d�

k Hkdk + 3εE‖dk‖2 + σ‖dk‖3 � ‖gk + Hkdk + 3εEdk + σ‖dk‖dk‖ · ‖dk‖
� εS‖dk‖. (A4)

Then, we have

g�
k dk

(A4)

� εS‖dk‖ − d�
k Hkdk − 3εE‖dk‖2 − σ‖dk‖3

= εS‖dk‖ − (d�
k Hkdk + 3εE‖dk‖2) − σ‖dk‖3

(A3)

� εS‖dk‖ − εE‖dk‖2 − σ‖dk‖3. (A5)

By (A4), we also have

d�
k Hkdk � −g�

k dk − 3εE‖dk‖2 − σ‖dk‖3 + εS‖dk‖. (A6)

123

R. Jiang et al.

Hence, we obtain

m(dk) = g�
k dk + 1

2
d�
k Hkdk + σ

3
‖dk‖3

(A6)

� g�
k dk − 1

2
g�
k dk − 3

2
εE‖dk‖2 − σ

2
‖dk‖3 + 1

2
εS‖dk‖ + σ

3
‖dk‖3

= 1

2
g�
k dk − 3

2
εE‖dk‖2 + 1

2
εS‖dk‖ − σ

6
‖dk‖3

(A5)

� 1

2
εS‖dk‖ − σ

2
‖dk‖3 − 2εE‖dk‖2 + 1

2
εS‖dk‖ − σ

6
‖dk‖3

= −2σ

3
‖dk‖3 − 2εE‖dk‖2 + εS‖dk‖,

or equivalently,

−m(dk) � 2σ

3
‖dk‖3 + 2εE‖dk‖2 − εS‖dk‖.

Due to εS = ε2E/L as in Condition 2, it follows that

− m(dk) � 2σ

3
‖dk‖3 + 2εE‖dk‖2 − ε2E

L
‖dk‖. (A7)

Now suppose that xk +dk is not an (εg,
√
Lεg) stationary point.We then have either

(i) ‖∇ f (xk +dk)‖ > εg or (ii) ‖∇ f (xk +dk)‖ � εg, λmin(∇2 f (xk +dk)) < −√
Lεg .

Let us consider the following cases (i) and (ii) separately.

(i) Using (A2), Taylor expansion for ∇ f (xk + dk) and (11), we have

‖∇ f (xk + dk)‖ � ‖gk + Hkdk‖ + L

2
‖dk‖2

� εS + 3εE‖dk‖ + (σ + L

2
)‖dk‖2, (A8)

where the first inequality follows fromLemma 1 in [1]. Using ‖∇ f (xk+dk)‖ > εg
and (A8), we obtain

εg � εS + 3εE‖dk‖ + (σ + L

2
)‖dk‖2.

This gives

‖dk‖ �
−3εE +

√
9ε2E − 4(σ + L

2)(εS − εg)

2σ + L
or

‖dk‖ �
−3εE −

√
9ε2E − 4(σ + L

2)(εS − εg)

2σ + L
,

123

Cubic Regularization Methods with Second-Order Complexity· · ·

where the second case is discarded since ‖dk‖ � 0. Due to εS = ε2E/L and
εg = ε2E/L in Condition 2, we further have

‖dk‖ �
−3εE +

√
25ε2E + (32σ/L)ε2E

2σ + L
. (A9)

– For Algorithm 1, due to σ = L/2, (A9) yields

‖dk‖ � 3

2L
εE .

Therefore, using σ = L/2, we have

−m(dk)
(A7)

�
33ε3E
8L2 .

– Note that from Lemma 7, we have σ = σk � max{σ0, γ L
2 } for Algorithm 2.

Therefore, if σ � L/2, (A9) yields

‖dk‖ � 3

(max{γ, 2σ0/L} + 1)L
εE , (A10)

and if σ < L/2, (A9) yields

‖dk‖ � 1

L
εE . (A11)

Using (A9), we claim the following inequality holds,

2σ

3
‖dk‖2 + 2εE‖dk‖ − ε2E

L
�

3ε2E
L

, (A12)

provided σ > 0. Now combining (A7), (A10), (A11) and (A12), we have

−m(dk) �
3ε2E
L

‖dk‖ � min

{
3

max{γ, 2σ0/L} + 1
, 1

}
· 3ε

3
E

L2 .

Indeed, to prove inequality (A12), we only need to show, using (A9),

2(
√
25 + 32a − 3)2

3(4a + 4 + 1/a)
+ 2(

√
25 + 32a − 3)

2a + 1
= 2

3

32a2 + 16a + 3
√
25 + 32a − 9

(2a + 1)2
� 4,

for a = σ/L > 0. Note that the above inequality is equivalent to

ψ(a) = 8a2 − 8a + 3
√
25 + 32a − 15 � 0.

123

R. Jiang et al.

As ψ(0) = 0, it suffices to show

ψ ′(a) = 16a − 8 + 48√
25 + 32a

> 0, ∀ a � 0.

This holds because

ψ ′′(a) = 16 − 48
16

(
√
25 + 32a)3

= 16(1 − 48

(
√
25 + 32a)3

) � 16(1 − 48

125
) > 0, ∀ a � 0,

and ψ ′(0) = 8
5 � 0.

(ii) By Assumption 1 and (A3), we have

λmin(∇2 f (xk + dk)) � λmin(Hk) − L‖dk‖ � −2εE − L‖dk‖. (A13)

Using λmin(∇2 f (xk + dk)) � −√
Lεg and (A13), we obtain

−2εE − L‖dk‖ � −√
Lεg.

This, together with εE = √
Lεg/3, implies

‖dk‖ �
√
Lεg − 2εE

L
= εE

L
. (A14)

It follows that

−m(dk)
(A7)

� 2σ

3
‖dk‖3 + 2εE‖dk‖2 − ε2E

L
‖dk‖

(A14)

�
(
0 + 2εE

(εE

L

)
− ε2E

L

)
‖dk‖

(A14)

�
ε3E

L2 .

Combining (i) and (ii), we complete the proof.

A.2 Proofs for Lemma 2

In this case, dk is generated by either line 13 or line 16 of Algorithm 1 (Algorithm 2,
respectively), depending on the normof sk returned by approximately solving (8) ((10),
respectively). Let σ = L/2 for Algorithm 1 and σ = σk for Algorithm 2. We prove
the results twofold.

(i) When σ‖sk‖ + αk � 0, we must have [σ‖sk‖ + αk]+ = σ‖sk‖ + αk . Note that

∇m̃r
k(sk) = gk + Hksk + (2εE − αk)sk + [σ‖sk‖ + αk]+ sk . (A15)

123

Cubic Regularization Methods with Second-Order Complexity· · ·

Using (14) and dk = sk , we obtain

g�
k dk + d�

k Hkdk + (2εE − αk)‖dk‖2 + [σ‖dk‖ + αk]+ ‖dk‖2
�

∥∥gk + Hkdk + (2εE − αk)dk + [σ‖dk‖ + αk]+ dk
∥∥ · ‖dk‖

�εS‖dk‖.
(A16)

Since αk � λmin(Hk) + εE , we have Hk − αk I + 2εE I � 0 and thus

d�
k Hkdk + (2εE − αk)‖dk‖2 � 0. (A17)

Noting that [σ‖sk‖ + αk]+ � 0, we have from (A16) and (A17) that

g�
k dk � εS‖dk‖. (A18)

On the other hand, according to σ‖sk‖ + αk � 0 and (A16), we have

d�
k Hkdk � −g�

k dk + (αk − 2εE)‖dk‖2 − σ‖dk‖3 − αk‖dk‖2 + εS‖dk‖
= −g�

k dk − σ‖dk‖3 − 2εE‖dk‖2 + εS‖dk‖.
(A19)

Since dk = sk , and αk � −εE , from σ‖sk‖ + αk � 0 we obtain

‖dk‖ � −αk

σ
� εE

σ
. (A20)

We further have

m(dk) = g�
k dk + 1

2
d�
k Hkdk + σ

3
‖dk‖3

(A19)

� g�
k dk − 1

2
g�
k dk − σ

2
‖dk‖3 − εE‖dk‖2 + 1

2
εS‖dk‖ + σ

3
‖dk‖3

= 1

2
g�
k dk + 1

2
εS‖dk‖ − εE‖dk‖2 − σ

6
‖dk‖3

(A18)

� 1

2
εS‖dk‖ + 1

2
εS‖dk‖ − εE‖dk‖2 − σ

6
‖dk‖3

= −σ

6
‖dk‖3 − εE‖dk‖2 + εS‖dk‖.

This gives

− m(dk) � σ

6
‖dk‖3 + εE‖dk‖2 − εS‖dk‖. (A21)

Thus, the desired bound holds immediately for Algorithm 1.
Now consider Algorithm 2. Similar to the proof for Lemma 1, we consider two
cases ‖∇ f (xk + dk)‖ > εg , and ‖∇ f (xk + dk)‖ � εg, λmin(∇2 f (xk + dk)) <

−√
Lεg . For the latter case, similar to case (ii) in the proof of Lemma 1, from

123

R. Jiang et al.

Lipschitz continuity of Hessian, we have ‖dk‖ � εE/L . Then, due to εS = ε2E/L
in Condition 2, we have 2εE‖dk‖ − εS � 0 and thus (A21) yields

−m(dk) � σ

6
‖dk‖3

(A20)

�
ε3E

6σ 2 .

Now consider the case ‖∇ f (xk + dk)‖ > εg , whose proof follows a similar idea
to that in Lemma 1. Since the subproblem is approximately solved, we have

‖∇m̃r
k(dk)‖ � εS

and thus (A15), together with σ‖dk‖ + αk � 0, gives

‖gk + Hkdk + (2εE − αk)dk + [σ‖dk‖ + αk]+ dk‖ = ‖gk + Hkdk + (2εE + σ‖dk‖)dk‖ � εS .

Hence, we have

εg � ‖∇ f (xk + dk)‖ � ‖gk + Hk‖ + L

2
‖dk‖2 � εS + 2εE‖dk‖ + (σ + L

2
)‖dk‖2.

The due to Condition 2, the above quadratic inequality gives

‖dk‖ �
−2εE +

√
4ε2E − 4(σ + L/2)(εS − εg)

2σ + L
=

−2εE +
√
20ε2E + 32σε2E/L

2σ + L
.

We claim the following inequality holds

σ

6
‖dk‖2 + εE‖dk‖ − εS

� σ

6

⎛
⎝−2εE +

√
20ε2E + 32σε2E/L

2σ + L

⎞
⎠

2

+εE

−2εE +
√
20ε2E + 32σε2E/L

2σ + L
− ε2E

L
�

ε2E

3L
, (A22)

which further gives

−m(dk) � 1

3L
ε2E‖dk‖

(A20)

� 1

3σ L
ε3E .

Indeed, (A22) is equivalent to, by defining a = σ/L ,

ψ(a) = 4a
√
5 + 8a − 8a + 3

√
5 + 8a − 5 � 0,

123

Cubic Regularization Methods with Second-Order Complexity· · ·

which holds since

1

8
ψ ′(a) = 6a + 4√

5 + 8a
− 1 � 0 ⇐⇒ 36a2 + 40a + 9 � 0 ⇐⇒ 9(2a + 1)2 + 4a � 0 ∀ a � 0,

and ψ(0) = 3
√
5 − 5 > 0.

(ii) When σ‖sk‖ + αk < 0, we have dk = 1
2σ wk, αk = v�

k Hkvk = w�
k Hkwk

w�
k wk

,

‖wk‖ = |αk |, and w�
k gk � 0. It follows that

d�
k Hkdk = 1

4σ 2w�
k Hkwk = 1

4σ 2 αkw
�
k wk = 1

4σ 2 α3
k . (A23)

Since αk � −εE < 0, we also have

‖dk‖3 = 1

8σ 3 ‖wk‖3 = 1

8σ 3 |αk |3 = − 1

8σ 3α3
k . (A24)

Then, we have

m(dk) = g�
k dk + 1

2
d�
k Hkdk + σ

3
‖dk‖3

= 1

2σ
g�
k wk + 1

8σ 2 α3
k − 1

24σ 2 α3
k

� 1

12σ 2 α3
k ,

where the second equality follows from (A23) and (A24), and the inequality fol-
lows from w�

k gk � 0. Due to αk � −εE , we have

−m(dk) � − 1

12σ 2 α3
k � 1

12σ 2 ε3E .

Combining (i) and (ii) and noting σ = L/2 in Algorithm 1 and σ = σk ∈
(0,max{σ0, γ L/2}) (due to Lemma 7) and γ > 1 in Algorithm 2, we complete
the proof.

References

[1] Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math.
Program. 108(1), 177–205 (2006)

[2] Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part I: motivation, convergence and numerical results. Math. Program. 127(2), 245–295
(2011)

[3] Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding
cubic terms. Technical report, Technical report NA/12, (1981)

[4] Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained opti-
mization. Part ii: worst-case function-and derivative-evaluation complexity. Math. Program. 130(2),
295–319 (2011)

123

R. Jiang et al.

[5] Curtis, F.E., Robinson, D.P., Royer, C.W., Wright, S.J.: Trust-region Newton-CG with strong second-
order complexity guarantees for nonconvex optimization. SIAM J. Optim. 31(1), 518–544 (2021)

[6] Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., Ma, T.: Finding approximate local minima faster
than gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 1195–1199. ACM, (2017)

[7] Yair, C., Duchi, J.C., Hinder, O., Sidford, A.: Acceleratedmethods for nonconvex optimization. SIAM
J. Optim. 28(2), 1751–1772 (2018)

[8] Royer, C.W., Wright, S.J.: Complexity analysis of second-order line-search algorithms for smooth
nonconvex optimization. SIAM J. Optim. 28(2), 1448–1477 (2018)

[9] Royer, C.W., O’Neill, M., Wright, S.J.: A Newton-CG algorithm with complexity guarantees for
smooth unconstrained optimization. Math. Program. 180(1), 451–488 (2020)

[10] Yair, C., Duchi, J.C.: Analysis of Krylov subspace solutions of regularized non-convex quadratic
problems. In Advances in Neural Information Processing Systems, pp. 10705–10715 (2018)

[11] Carmon, Y., Duchi, J.C.: First-order methods for nonconvex quadratic minimization. SIAM Rev.
62(2), 395–436 (2020)

[12] Carmon, Yair, Duchi, John: Gradient descent finds the cubic-regularized nonconvex Newton step.
SIAM J. Optim. 29(3), 2146–2178 (2019)

[13] Jiang, Rujun, Yue, Man-Chung., Zhou, Zhishuo: An accelerated first-order method with complexity
analysis for solving cubic regularization subproblems. Comput. Optim. Appl. 79(2), 471–506 (2021)

[14] Flippo, O.E., Jansen, B.: Duality and sensitivity in nonconvex quadratic optimization over an ellipsoid.
Eur. J. Oper. Res. 94(1), 167–178 (1996)

[15] Ho-Nguyen, Nam, Kılınç-Karzan, Fatma: A second-order cone based approach for solving the trust-
region subproblem and its variants. SIAM J. Optim. 27(3), 1485–1512 (2017)

[16] Wang, Jiulin, Xia, Yong: A linear-time algorithm for the trust region subproblem based on hidden
convexity. Optim. Lett. 11(8), 1639–1646 (2017)

[17] Jiang, R., Li, D.: Novel reformulations and efficient algorithms for the generalized trust region sub-
problem. SIAM J. Optim. 29(2), 1603–1633 (2019)

[18] Nesterov, Y.: Lectures on Convex Optimization, vol. 137. Springer, Berlin (2018)
[19] Xu, P., Roosta, F., Mahoney, M.W.: Newton-type methods for non-convex optimization under inexact

Hessian information. Math. Program. 184(1), 35–70 (2020)
[20] Vandenberghe, L..: Accelerated Proximal Gradient Methods. Lecture notes, https://www.seas.ucla.

edu/~vandenbe/236C/lectures/fgrad.pdf, (2021)
[21] Kuczyński, Jacek, Woźniakowski, Henryk: Estimating the largest eigenvalue by the power and Lanc-

zos algorithms with a random start. SIAM J. Matrix Anal. Appl. 13(4), 1094–1122 (1992)
[22] Jonathan, B., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–

148 (1988)
[23] Gould, N.I.M., Orban, D., Toint, P.L.: Cutest: a constrained and unconstrained testing environment

with safe threads for mathematical optimization. Comput. Optim. Appl. 60(3), 545–557 (2015)
[24] O’Donoghue, Brendan, Candes, Emmanuel: Adaptive restart for accelerated gradient schemes. Found.

Comput Math. 15(3), 715–732 (2015)
[25] Ito, Naoki, Takeda, Akiko, Toh, Kim-Chuan.: A unified formulation and fast accelerated proximal

gradient method for classification. J. Mach. Learn. Res. 18(1), 510–558 (2017)
[26] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91(2), 201–213 (2002)
[27] Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, P.L.: Worst-case evaluation com-

plexity for unconstrained nonlinear optimization using high-order regularizedmodels.Math. Program.
163(1–2), 359–368 (2017)

[28] Jiang, Bo., Lin, Tianyi, Zhang, Shuzhong: A unified adaptive tensor approximation scheme to accel-
erate composite convex optimization. SIAM J. Optim. 30(4), 2897–2926 (2020)

[29] Nesterov,Yurii: Implementable tensormethods in unconstrained convex optimization.Math. Program.
186(1), 157–183 (2021)

[30] Geovani Nunes Grapiglia and Yu Nesterov: On inexact solution of auxiliary problems in tensor
methods for convex optimization. Optim. Methods Softw. 36(1), 145–170 (2021)

123

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf

	Cubic Regularization Methods with Second-Order Complexity Guarantee Based on a New Subproblem Reformulation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 A New Convex Reformulation for (CRS)
	2.2 Variants of the CR and the ARC Algorithms and Main Complexity Results
	2.3 Progress in One Iteration of the Model Function

	3 Convergence Analysis for the CR Algorithm
	4 Convergence Analysis for the ARC Algorithm
	5 Numerical Experiments
	6 Conclusion
	Acknowledgements
	A Appendix
	A.1 Proofs for Lemma 1
	A.2 Proofs for Lemma 2

	References

