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Abstract A set of quadratic forms is simultaneously diagonalizable via congruence
(SDC) if there exists a basis under which each of the quadratic forms is diago-
nal. This property appears naturally when analyzing quadratically constrained
quadratic programs (QCQPs) and has important implications in globally solving
such problems using branch-and-bound methods. This paper extends the reach of
the SDC property by studying two new weaker notions of simultaneous diagonal-
izability. Specifically, we say that a set of quadratic forms is almost SDC (ASDC)
if it is the limit of SDC sets and d-restricted SDC (d-RSDC) if it is the restriction
of an SDC set in up to d-many additional dimensions. In the context of QCQPs,
these properties correspond to problems that may be diagonalized after arbitrarily
small perturbations or after the introduction of d additional variables. Our main
contributions are complete characterizations of the ASDC pairs and nonsingu-
lar triples of symmetric matrices, as well as a sufficient condition for the 1-RSDC
property for pairs of symmetric matrices. Surprisingly, we show that every singular
symmetric pair is ASDC and that almost every symmetric pair is 1-RSDC. We ac-
company our theoretical results with preliminary numerical experiments applying
these constructions to solve QCQPs within branch-and-bound schemes.
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1 Introduction

This paper investigates two new notions of simultaneous diagonalizability of quadratic
forms and their applications in solving quadratically constrained quadratic pro-
grams (QCQPs).

Let Sn denote the real vector space of n× n symmetric matrices.1 Recall that
a set of matrices A ⊆ Sn is said to be simultaneously diagonalizable via congruence

(SDC) if there exists an invertible P ∈ Rn×n such that P⊺AP is diagonal for
every A ∈ A. This property has attracted significant interest in the optimization
community in recent years in the context of solving subclasses of QCQPs and their
relaxations [22, 25, 29, 33, 43, 46, 47]. Specifically, the SDC property corresponds
to the ability to rewrite a given QCQP as a diagonal QCQP (see Section 1.1
below). The SDC property also finds applications in areas such as signal processing,
multivariate statistics, medical imaging analysis, and genetics; see [12, 40] and
references therein.

In this paper, we take a step towards increasing the practical importance of
the SDC property in the context of globally solving QCQPs by investigating two
weaker notions of simultaneous diagonalizability. These weaker notions formalize
methods for diagonalizing classes of a priori non-diagonalizable QCQPs.

1.1 Motivation

A general QCQP can be written as

Opt := inf
x∈Rn

{
x⊺A1x+ 2b⊺1x+ c1 :

x⊺Aix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L

}
, (1)

where for every i ∈ [m], we have Ai ∈ Sn, bi ∈ Rn, ci ∈ R, and �i ∈ {≤,=}; and
L ⊆ Rn is a polyhedron. In words, the objective is to minimize a quadratic function
subject to quadratic (in)equality constraints and linear (in)equality constraints.
QCQPs are highly expressive and capture numerous hard problems of both applied
and theoretical interest; see [3, 37, 43] and references therein. In fact, this class of
problems is NP-hard even if L = [−1, 1]n and there are no quadratic constraints
(e.g., via max-cut).

We will refer to a QCQP in which the set of symmetric matricesA = {A1, . . . , Am}
is SDC as a diagonalizable QCQP. By definition, a diagonalizable QCQP can be
rewritten as a diagonal QCQP (one in which A is a set of diagonal matrices) upon
a linear change of variables. Indeed, letting y = P−1x and Di = P⊺AiP gives

inf
y∈Rn

{
y⊺D1y + 2(P⊺b1)

⊺y + c1 :
y⊺Diy + 2(P⊺bi)

⊺y + ci �i 0, ∀i ∈ [2,m]
y ∈ P−1L

}
.

While diagonal QCQPs are still NP-hard in general, they benefit from a number
of advantages over more general QCQPs:

1 While all of our results hold with only minor modifications over both Cn and Hermitian
matrices and Rn and symmetric matrices, we will simplify our presentation in the main body
by discussing only the real setting; see Appendix C for a discussion of our results in the complex
setting.
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– It is well known that the standard Shor semidefinite program (SDP) relaxation
of a diagonal QCQP is equivalent to a second-order cone program (SOCP)
[43]. Consequently, the SDP relaxation can be solved substantially faster for
diagonal QCQPs than for general QCQPs. Similar ideas have be used to build
cheap but strong convex relaxations within branch and bound (BB) frameworks
for nonconvex QCQPs [46, 47].
As we will see in Section 7, when P is well-conditioned, the computational
savings of replacing an SDP with an SOCP within every node of a BB tree
can outweigh the computational costs of preprocessing a diagonalizable QCQP
into a diagonal QCQP.

– Additionally, qualitative properties of the standard SDP relaxation are often
easier to analyze in the context of diagonal QCQPs. For example, a long line
of work has investigated when the SDP relaxations of certain diagonal QCQPs
are exact (for various definitions of exact) and have given sufficient conditions
for these properties [4, 5, 8, 10, 17, 19, 21, 22, 27, 42]. For instance, Blekherman
et al. [8] established in Theorem 2.12 that the convex hull of a set defined by a
particular class of diagonal quadratic inequalities can be described using finitely
many convex quadratic inequalities. In general, such arguments often rely on
conditions (such as convexity2 or polyhedrality) of the quadratic image [35] or
the set of convex Lagrange multipliers [43]. In this context, the SDC property
ensures that both of these sets are polyhedral. While such conditions have
been generalized beyond only diagonal or diagonalizable QCQPs, the sufficient
conditions often become much more difficult to verify [41, 43].
As we will see in Section 7, the SDP relaxation of a diagonal QCQP with bound
constraints (as are encountered within BB schemes) admits low-rank solutions.
Heuristically, this may suggest that the corresponding SDP relaxations should
be strong—despite the fact that there is no formal connection between the
rank of the solution and the quality of the relaxation.

1.2 Main contributions and outline

In this paper, we define and analyze the almost SDC (ASDC) and d-restricted

SDC (d-RSDC) properties; see Sections 2 and 5 for precise definitions. Informally,
A ⊆ Sn is ASDC if it is the limit of SDC sets and d-RSDC if it is the restriction of
an SDC set in Sn+d to Sn. In the context of QCQPs, if the set A = {A1, . . . , Am} is
ASDC, then the QCQP can be diagonalized after arbitrarily small perturbations
to the Ai matrices. In a similar vein, if A is d-RSDC, then the QCQP can be
diagonalized after the introduction of d additional “dummy” variables.

A summary of our contributions, along with an outline of the paper, follows:

– We conclude this section in Section 1.3 by reviewing related work on BB meth-
ods for QCQPs, the SDC property, and the almost simultaneously diagonaliz-
able via similarity property.

– In Section 2, we formally define the SDC and ASDC properties and review
known characterizations of the SDC property. We additionally highlight a num-
ber of behaviors of the SDC property which will later contrast with those of
the ASDC property.

2 The convexity of the quadratic image is sometimes referred to as “hidden convexity.”
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– In Section 3, we give a complete characterization of the ASDC property for
pairs of symmetric matrices. In particular, Theorem 2 states that every sin-
gular3 pair {A,B} ⊆ Sn is ASDC. The proof of this statement relies on the
canonical form for pairs of symmetric matrices [39] under congruence transfor-
mations and the invertibility of a certain matrix related to the eigenvalues of
an “arrowhead” matrix.

– In Section 4, we give a complete characterization of the ASDC property for
nonsingular triples of symmetric matrices. Our proof and constructions rely on
facts about block matrices with Toeplitz upper triangular blocks. We review
the relevant properties of such matrices in Appendix B.

– In Section 5, we formally define the d-RSDC property and highlight its rela-
tion to the ASDC property. We will see that any pair of symmetric matrices
{A,B} ⊂ Sn is naively n-RSDC. We strengthen this observation by showing in
Theorem 4 that the 1-RSDC property holds for almost every pair of symmetric
matrices. We also give a construction for the d-RSDC property for d ≥ 1 and
almost every pair of symmetric matrices. This second construction makes use
of additional degrees of freedom and empirically leads to improved performance
in the context of globally solving QCQPs (see Section 7).

– In Section 6, we construct obstructions to a priori plausible generalizations
of our developments in Sections 3 to 5. Section 6.1 shows that, in contrast
to Theorem 2, there exist singular triples of symmetric matrices which are
not ASDC. The same construction can be interpreted as a triple of symmetric
matrices which is not d-RSDC for any d < ⌊n/2⌋; this contrasts with Theorem 4.
Next, Section 6.2 shows that a natural generalization of our characterizations
of the ASDC property for pairs and triples of symmetric matrices cannot hold
for general m-tuples; specifically this natural generalization fails for m ≥ 7.

– In Section 7, we revisit one of the key motivations for studying the ASDC and
d-RSDC properties—solving QCQPs more efficiently. In this context, we begin
by deriving a number of theoretical results that give heuristic reasons why one
would expect SOCP-based BB methods for diagonal QCQPs to outperform
SDP-based BB methods for more general QCQPs. We then present a number
of preliminary numerical experiments that corroborate this intuition. While our
d-RSDC based reformulations significantly outperform the direct SDP-based
BB approach, it is slightly worse than the simpler n-RSDC based reformulation
(see Section 7 for details). Nonetheless, we believe that diagonalization-based
methods can be a useful tool in the development of more efficient methods
for QCQPs and that the theory developed in this paper is a first step in this
direction.

Remark 1 In the main body of this paper, we will state and prove our results
for only the real symmetric setting. Nevertheless, our results and proofs extend
almost verbatim to the Hermitian setting by replacing the canonical form of a
pair of real symmetric matrices (Proposition 3) by the canonical form for a pair
of Hermitian matrices (see [24, Theorem 6.1]). As no new ideas or insights are
required for handling the Hermitian setting, we defer formally stating our results
in the Hermitian setting and discussing the necessary modifications to our proofs
to Appendix C.

3 See Definition 3.
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1.3 Related work

Branch-and-bound methods for QCQPs Most existing works for globally solving QC-
QPs are based on spatial BB methods. Audet et al. [2] developed an LP-based
branch and cut method for QCQPs using the reformulation-linearization tech-
nique (RLT) [36]. Linderoth [26] proposed a triangle-based BB algorithm for solv-
ing nonconvex QCQPs, where two-dimensional triangles and rectangles are used
to partition the feasible region. Recently, Zhou et al. [47] proposed a BB algorithm
for QCQPs with nonconvex objective functions and convex quadratic constraints,
based on the SDC property between the objective function and a specific aggrega-
tion of the convex quadratic constraints under a positive definiteness assumption.
Luo et al. [29] propose a BB algorithm based on the SDC property of two positive
semidefinite matrices for solving a nonconvex QCQP arising from optimal portfolio
deleveraging problems. Please refer to [7, 13–15, 28] for other recent developments
in globally solving nonconvex QCQPs.

The SDC property for sets of quadratic forms and SDC algorithms. The SDC property
for a pair of symmetric matrices (more generally, Hermitian matrices) is well-
understood and follows from results due to Weierstrass [44] and Kronecker (see
[23]). We review these results in Section 2 (see also Proposition 3). More recently,
there has been much interest in the optimization literature towards understanding
the SDC property for general m-tuples of quadratic forms [22, 25, 33]. In fact,
the search for “sensible and “palpable” conditions” for this property appeared as
an open question on a short list of 14 open questions in nonlinear analysis and
optimization [16]. In the real symmetric setting, Jiang and Li [22] gave a complete
characterization of this property under a semidefiniteness assumption. This result
was then improved upon by Nguyen et al. [33] who removed the semidefiniteness
assumption. Le and Nguyen [25] additionally extend these characterizations to the
case of Hermitian matrices. Bustamante et al. [12] gave a complete characterization
of the simultaneous diagonalizability of an m-tuple of symmetric complex matrices
under ⊺-congruence.4

We remark that this line of work is “algorithmic” and gives numerical proce-
dures for deciding if a given set of quadratic forms is SDC. See [25] and references
therein.

The almost SDS property. An analogous theory for the almost simultaneous diago-
nalizability of linear operators has been studied in the literature. In this setting, the
congruence transformation is naturally replaced by a similarity transformation5

and the SDC property is replaced by simultaneous diagonalizability via similarity

(SDS). A widely cited theorem due to Motzkin and Taussky [32] shows that every
pair of commuting linear operators, i.e., a pair of matrices in Cn×n, is almost SDS.
This line of investigation was more recently picked up by O’meara and Vinson-
haler [34] who showed that triples of commuting linear operators are almost SDS
under a regularity assumption on the dimensions of eigenspaces associated with
the linear operators.

4 We emphasize that Bustamante et al. [12] consider complex symmetric matrices and adopt
⊺-congruence as their notion of congruence.

5 Recall that two matrices A,B ∈ Cn×n are similar if there exists an invertible P ∈ Cn×n

such that A = P−1BP .
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1.4 Notation

Let N = {1, 2, . . . } and N0 = {0, 1, . . . }. Form,n ∈ N0, let [m,n] = {m,m+ 1, . . . , n}
and [n] = {1, . . . , n}. By convention, if m ≥ n + 1 (respectively, n ≤ 0), then
[m,n] = ∅ (respectively, [n] = ∅). Given x ∈ Rn, let supp(x) := {i ∈ [n] : xi ̸= 0}
denote the support of x. Let |I| be the cardinality of a set I. For n ∈ N, let Sn
denote the vector space of n × n symmetric matrices. For v ∈ Rn and A ∈ Rn×n

let v⊺ and A⊺ denote the transpose of v and A respectively. Let span(·) and dim(·)
denote the span and dimensions respectively. For n,m ∈ N, let In, 0n, and 0n×m

denote the n × n identity matrix, n × n zero matrix, and n × m zero matrix re-
spectively. When n ∈ N is clear from context, let ei ∈ Rn denote the ith standard
basis vector. Given a complex subspace V ⊆ Rn with dimension k, a surjective
map U : Rk → V , and A ∈ Sn, let A|V ∈ Sk denote the restriction of A to V ,
i.e., A|V = U⊺AU . When the map U is inconsequential, we will omit specifying
U . For α1, . . . , αk ∈ R, let Diag(α1, . . . , αk) ∈ Rk×k denote the diagonal matrix
with ith entry αi. For A1, . . . , Ak square matrices, let Diag(A1, . . . , Ak) denote the
block diagonal matrix with ith block Ai. Given A ∈ Rn×n and B ∈ Rm×m, let
A ⊕ B ∈ R(n+m)×(n+m) and A ⊗ B ∈ Rnm×nm denote the direct sum and Kro-
necker product of A and B respectively. Given A,B ∈ Rn×n, let [A,B] := AB−BA

denote the commutator of A and B. For A ∈ Rn×n, let ∥A∥ denote the spectral
norm of A. Given α ∈ C, let Re(α), Im(α), and α∗ denote the real and imaginary
parts and complex conjugate of α respectively. For A ∈ Cn×n, let A∗ denote the
conjugate transpose of A. We will denote the imaginary unit by the symbol i in
order to distinguish it from the variable i, which will often be used as an index.

2 Preliminaries

In this section, we define our main objects of study and recall some useful results
from the literature.

Definition 1 A set A ⊆ Sn is simultaneously diagonalizable via congruence (SDC) if
there exists an invertible P ∈ Rn×n such that P⊺AP is diagonal for all A ∈ A.

Remark 2 The SDC property is the natural notion for simultaneous diagonalization
in the context of quadratic forms. Indeed, suppose A ⊆ Sn is SDC and let P denote
the corresponding invertible matrix. Then, performing the change of variables
y = P−1x, we have that x⊺Ax = y⊺(P⊺AP )y is separable in y for every A ∈ A.

Observation 1 The SDC property is closed under taking spans and subsets. In partic-

ular, A ⊆ Sn is SDC if and only if {A1, . . . , Am} is SDC for some basis {A1, . . . , Am}
of span(A).

We begin by studying the following relaxation of the SDC property.

Definition 2 A set A ⊆ Sn is almost simultaneously diagonalizable via congruence

(ASDC) if there exist sequences Ai → A for every A ∈ A such that for every i ∈ N,
the set {Ai : A ∈ A} is SDC.

Observation 2 The ASDC property is closed under taking spans and subsets. In

particular, A ⊆ Sn is ASDC if and only if {A1, . . . , Am} is ASDC for some basis

{A1, . . . , Am} of span(A).
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When |A| is finite, we will use the following equivalent definition of ASDC.

Observation 3 A finite set {A1, . . . , Am} ⊆ Sn is ASDC if and only if for all ϵ > 0,
there exist Ã1, . . . , Ãm ∈ Sn such that

– for all i ∈ [m], the spectral norm
∥∥Ai − Ãi

∥∥ ≤ ϵ, and

–
{
Ã1, . . . , Ãm

}
is SDC.

We will additionally need the following two definitions.

Definition 3 A set A ⊆ Sn is nonsingular if there exists a nonsingular A ∈
span(A). Else, it is singular.

Definition 4 Given a set A ⊆ Sn, we will say that S ∈ A is a max-rank element of
span(A) if rank(S) = maxA∈A rank(A).

Remark 3 Our procedures for determining SDC and ASDC will assume we have
access to a max-rank element S ∈ A. This element is easy to produce algorithmi-
cally. In fact, we claim that a generic S ∈ A will be a max-rank element of A. To
see this, let k = maxA∈A rank(A) and let Ŝ be any max-rank element of A. Then,
there must be some principal minor of Ŝ indexed by I of size |I| = k such that
det(ŜI) ̸= 0. Thus, det(SI) is a nonzero polynomial on A so that for generic S ∈ A
we have that det(SI) ̸= 0 and rank(S) = k. Thus, with probability one,

∑m
i=1 αiAi

is a max-rank element of A if we sample α ∈ [0, 1]m uniformly.

2.1 Characterization of SDC

A number of necessary and/or sufficient conditions for the SDC property have
been given in the literature [12, 18, 24]. For our purposes, we will need the fol-
lowing two results. The first result gives a characterization of the SDC property
for nonsingular sets of symmetric matrices and is well-known (see [18, Theorem
4.5.17]). The second result, due to Bustamante et al. [12], gives a characterization
of the SDC property for singular sets of symmetric matrices by reducing to the
nonsingular case. For completeness, we provide a short proof for each of these
results in Appendix A.

Proposition 1 Let A ⊆ Sn and suppose S ∈ span(A) is nonsingular. Then, A is SDC

if and only if S−1A is a commuting set of diagonalizable matrices with real eigenvalues.

Proposition 2 Let A ⊆ Sn and suppose S ∈ span(A) is a max-rank element of

span(A). Then, A is SDC if and only if range(A) ⊆ range(S) for every A ∈ A and{
A|range(S) : A ∈ A

}
is SDC.

We close this section with two lemmas highlighting consequences of the SDC
property which we will compare and contrast with consequences of the ASDC
property.

Lemma 1 Let A ⊆ Sn and suppose S ∈ span(A) is positive definite. Then, A is SDC

if and only if S−1/2AS−1/2 is a commuting set.
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Proof. This follows as an immediate corollary to Proposition 1 and the fact that
S−1A has the same eigenvalues as the symmetric matrix S−1/2AS−1/2.

In particular, when span(A) contains a positive definite matrix, the SDC and
ASDC properties can be shown to be equivalent.

Corollary 1 Let A ⊆ Sn and suppose S ∈ span(A) is positive definite. Then, A is

SDC if and only if A is ASDC.

Despite Corollary 1, we will see soon that the ASDC property is qualitatively
quite different to the SDC property in a number of settings (in particular, for
singular pairs of symmetric matrices; see Theorem 2). Specifically, we will contrast
the following consequence of the SDC property.

Lemma 2 ([25, Lemma 9]) Let A ⊆ Sn and suppose there exists a common block

decomposition

A =

(
Ā

0d

)

for all A ∈ A. Then A is SDC if and only if
{
Ā : A ∈ A

}
⊆ Sn−d is SDC.

3 The ASDC property of symmetric pairs

In this section, we will give a complete characterization of the ASDC property
for pairs of symmetric matrices (henceforth, symmetric pairs). We will switch the
notation above and label our matrices A = {A,B}. Our analysis will proceed in
two cases: when {A,B} is nonsingular and singular respectively.

3.1 A canonical form for symmetric pairs

In this section and the next, we will make regular use of the canonical form for
symmetric pairs [24, 39].

We will need to define the following special matrices. For n ≥ 2, let Fn, Gn, Hn ∈
Sn denote the matrices of the form

Fn =

(
1

...
1

)
, Gn =

(
0

... 1

0
...

0 1

)
, and Hn =

(
1 0

... 0

1
...

0

)
.

Set F1 = (1) and G1 = H1 = (0).

The following proposition is adapted6 from [24, Theorem 9.1].

6 The original statement of [24, Theorem 9.1] contains one additional type of block: those
corresponding to the eigenvalues at infinity. These blocks do not exist in our setting by the
assumption that A is a max-rank element of span({A,B}).
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Proposition 3 Let A,B ∈ Sn and suppose A is a max-rank element of span({A,B}).
Then, there exists an invertible P ∈ Rn×n such that P⊺AP = Diag(S1, . . . , Sm) and

P⊺BP = Diag(T1, . . . , Tm) are block diagonal matrices with compatible block structure.

Here, m = m1+m2+m3+m4 corresponds to four different types of blocks where each

mi ∈ N0 may be zero. Additionally, m4 ∈ {0, 1}.
The first m1-many blocks of P⊺AP and P⊺BP have the form

Si = σiFni , Ti = σi(λiFni +Gni),

where ni ∈ N, σi ∈ {±1}, and λi ∈ R. The next m2-many blocks of P⊺AP and P⊺BP

have the form

Si =
(

Fni
Fni

)
, Ti = Fni ⊗

(
Im(λi) Re(λi)
Re(λi) − Im(λi)

)
+Gni ⊗ F2, (2)

where ni ∈ N and λi ∈ C \R. The next m3-many blocks of P⊺AP and P⊺BP have the

form

Si =

(
Fni

0
Fni

)
, Ti = G2ni+1,

where ni ∈ N. If m4 = 1, then the last block of P⊺AP and P⊺BP has the form

Sm = Tm = 0nm for some nm ∈ N.

We will repeatedly encounter real matrices that represent complex numbers,
e.g., the blocks S−1

i Ti for i corresponding to m2 in the canonical form. We recall
some useful facts: Let J ∈ C2×2 be the unitary matrix

J :=

(
i√
2

−i√
2

1√
2

1√
2

)
∈ C2×2.

Then, a matrix of the form
(

Im(λi) Re(λi)
Re(λi) − Im(λi)

)
has the same eigenvalues as

J∗
(

Re(λi) − Im(λi)
Im(λi) Re(λi)

)
J =

(
λi

λ∗
i

)
.

3.2 The nonsingular case

In this section, we will show that if A is invertible, then {A,B} is ASDC if and
only if A−1B has real eigenvalues. We begin by examining two examples that
are representative of the situation when A is invertible. Note in this case, that
m3 = m4 = 0 in the canonical form (Proposition 3).

Example 1 Let λ ∈ R and consider

A =

(
1

1

)
= F2, B =

(
0 λ

λ 1

)
= λF2 +G2.

Noting that A−1B is not diagonalizable, we conclude via Proposition 1 that {A,B}
is not SDC. On the other hand, let ϵ > 0 and define

B̃ =

(
ϵ λ

λ 1

)
.

Now, A−1B̃ has eigenvalues λ±
√
ϵ, whence by Proposition 1

{
A, B̃

}
is SDC.
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Example 2 Let λ ∈ C \R and consider

A = F2 =

(
1

1

)
, B =

(
Im(λ) Re(λ)
Re(λ) − Im(λ)

)
.

Noting that A−1B has non-real eigenvalues, we conclude via Proposition 1 (and
the fact that eigenvalues vary continuously) that {A,B} is not ASDC.

The following technical lemma will be useful in proving the main result of this
section and shows that it is possible to perturb B to ensure that A−1B has simple
eigenvalues while maintaining its number of real/complex eigenvalues.

Lemma 3 Let {A,B} ⊆ Sn and suppose A is invertible. For all ϵ > 0, there exists B̃

such that

–
∥∥B − B̃

∥∥ ≤ ϵ,

– A−1B̃ has simple eigenvalues (whence A−1B̃ is diagonalizable), and

– A−1B̃ and A−1B have the same number of real eigenvalues counted with multiplic-

ity.

Proof. Without loss of generality, we may assume that A = Diag(S1, . . . , Sm) and
B = Diag(T1, . . . , Tm) are in canonical form (Proposition 3). Note that as A is in-
vertible, we will have m3 = m4 = 0. For notational convenience, let r = m1 and let
σ1, . . . , σr, n1 . . . , nm, λ1, . . . , λm denote the quantities furnished by Proposition 3.
We will give a probabilistic construction (summarized in Algorithm 1) for B̃ that
satisfies all three conditions with probability one.

Let δ = ϵ
2 and pick a random η uniformly from [−δ, δ]m. Define the blocks T̃i

as

T̃i := Ti + σi (ηiFni + δHni) , ∀i ∈ [r],

T̃i := Ti + (ηiFni + δHni)⊗ F2, ∀i ∈ [r + 1,m], (3)

and set B̃ := Diag(T̃1, . . . , T̃m). Then, A−1B̃ = Diag(S−1
1 T̃1, . . . , S

−1
k T̃k) is again a

block diagonal matrix. Note that for i ∈ [r], the block

S−1
i T̃i = (λi + ηi)Ini + FniGni + δFniHni

is a Toeplitz tridiagonal matrix. Next, for i ∈ [r + 1,m], the block S−1
i T̃i has the

form

S−1
i T̃i = Ini ⊗

(
Re(λi) − Im(λi)
Im(λi) Re(λi)

)
+ (ηiIni + FniGni + δFniHni)⊗ I2. (4)

Note that S−1
i T̃i has the same eigenvalues as

(Ini ⊗ J)−1
S−1
i T̃i (Ini ⊗ J)

= Ini ⊗
(
λi

λ∗i

)
+ (ηiIni + FniGni + δFniHni)⊗ I2.

This is, up to a simultaneous permutation of rows and columns, a direct sum of
two Toeplitz tridiagonal matrices.
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Algorithm 1 Construction for simple eigenvalues

Input: A′, B′ ∈ Sn such that A′ is invertible and ϵ′ > 0

Output: B̃′ satisfies
∥∥∥B̃′ −B′

∥∥∥ ≤ ϵ′ and (A′)−1B̃′ with simple eigenvalues with probability
one

1. Compute the canonical form [24] for {A′, B′}, i.e.,

P ⊺A′P = A = Diag(S1, . . . , Sm), and

P ⊺B′P = B = Diag(T1, . . . , Tm).

2. Set ϵ = ϵ′/
∥∥P−1

∥∥2 and δ = ϵ
2

3. Pick η uniformly at random from [−δ, δ]m

4. Return B̃′ := P−⊺ Diag(T̃1, . . . , T̃m)P−1, where T̃i are defined in (3)

Using the closed form expression for eigenvalues of Toeplitz tridiagonal matri-
ces [18], we have that A−1B̃ has eigenvalues

r⋃
i=1

{
λi + ηi + 2

√
δ cos

(
πj

ni + 1

)
: j ∈ [ni]

}

∪
m⋃

i=r+1

{
λ+ ηi + 2

√
δ cos

(
πj

ni + 1

)
: j ∈ [ni], λ ∈

{
λi, λ

∗
i

}}
.

Note that the quantity ηi + 2
√
δ cos

(
πj

ni+1

)
is real so that A−1B and A−1B̃ have

the same number of real eigenvalues counted with multiplicity. Furthermore, as
η ∈ [−δ, δ]m was picked uniformly at random, we have that A−1B̃ has only simple
eigenvalues with probability one.

Finally,
∥∥B − B̃

∥∥ =
∥∥Diag(T1 − T̃1, . . . , Tm − T̃m)

∥∥ = maxi
∥∥Ti − T̃i

∥∥ ≤ ϵ.

The following theorem follows as a simple corollary to our developments thus
far.

Theorem 1 Let A,B ∈ Sn and suppose A is invertible. Then, {A,B} is ASDC if and

only if A−1B has real eigenvalues.

Proof. (⇒) This direction holds trivially by continuity of eigenvalues and the as-
sumption that A is invertible.

(⇐) Let ϵ > 0. Then, applying Lemma 3 to {A,B}, we get B̃ such that∥∥B − B̃
∥∥ ≤ ϵ and A−1B̃ is a matrix with real simple eigenvalues. We deduce by

Proposition 1 that
{
A, B̃

}
is SDC.

Corollary 2 Let A = {A1, . . . , Am} in (1) and suppose span(A) = span {A,B}
where A is invertible. Furthermore, suppose A−1B has real eigenvalues. Then for any

ϵ > 0, there exist
∥∥Ãi −Ai

∥∥ ≤ ϵ such that

inf
x∈Rn

{
x⊺Ã1x+ 2b⊺1x+ c1 :

x⊺Ãix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L

}
(5)

is a diagonalizable QCQP. The matrices Ãi and the invertible matrix P diagonalizing

(5) can be computed via Algorithm 1.
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3.3 The singular case

In the remainder of this section, we investigate the ASDC property when {A,B} is
singular. We will show, surprisingly, that every singular symmetric pair is ASDC.
We begin with an example and some intuition.

Example 3 In contrast to the SDC property (cf. Lemma 2), the ASDC property
of a pair {A,B} in the singular case does not reduce to the ASDC property of{
Ā, B̄

}
, where Ā and B̄ are the restrictions of A and B to the joint range of A and

B. For example, let

A =
(

1
1

0

)
, B =

(
1
−1

0

)
,

and let Ā and B̄ denote the respective 2× 2 leading principal submatrices.
By Theorem 1,

{
Ā, B̄

}
is not ASDC (and in particular not SDC). On the other

hand, we claim that {A,B} is ASDC: For ϵ > 0, consider the matrices

Ã =
(

1
1

ϵ

)
, B̃ =

(
1

√
ϵ

−1
√
ϵ√

ϵ
√
ϵ 0

)
.

A straightforward computation shows that Ã−1B̃ has simple eigenvalues {−1, 0, 1}
whence

{
Ã, B̃

}
is SDC.

The fact that
{
Ā, B̄

}
is not SDC is equivalent to the statement: there does not

exist a basis {p1, p2} ∈ R2 such that the quadratic forms x⊺Āx and x⊺B̄x can be
expressed as

x⊺Āx = α1 (p
⊺
1x)

2
+ α2 (p

⊺
2x)

2
, and

x⊺B̄x = β1 (p
⊺
1x)

2
+ β2 (p

⊺
2x)

2
,

for some αi, βi ∈ R. On the other hand, the fact that
{
Ã, B̃

}
is SDC shows that

there exists a spanning set {p1, p2, p3} ⊆ R2 and αi, βi ∈ R such that

x⊺Āx = α1 (p
⊺
1x)

2
+ α2 (p

⊺
2x)

2
+ α3 (p

⊺
3x)

2
, and

x⊺B̄x = β1 (p
⊺
1x)

2
+ β2 (p

⊺
2x)

2
+ β3 (p

⊺
3x)

2
.

Intuitively, the ASDC property asks whether a set of quadratic forms can be
(almost) diagonalized using n (the ambient dimension)-many linear forms whereas
the SDC property may be forced to use a smaller number of linear forms.

Theorem 2 Let {A,B} ⊆ Sn. If {A,B} is singular, then it is ASDC.

Proof. We make simplifying assumptions: Without loss of generality, we may as-
sume that A is a max-rank element of span({A,B}) and A = Diag(S1, . . . , Sm)
and B = Diag(T1, . . . , Tm) are in canonical form (Proposition 3). We may as-
sume m1 = 0 (else consider the submatrix of A,B corresponding to the remaining
blocks). As A is singular, we have m3+m4 ≥ 1. In fact, we may assume m3+m4 = 1
(else, perturb the submatrix of A corresponding to the first m−1 blocks so that A
is nonsingular on those blocks). Similarly, if m4 = 1, we may assume that nm = 1.
Finally, assume Diag(S−1

1 T1, . . . , S
−1
m−1Tm−1) has simple eigenvalues (else apply

Algorithm 1 to the first m− 1 blocks). For notational convenience, let m2 = k.
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After the above simplifying assumptions, there are three cases left to consider:
where m ≥ 2 and m4 = 1, where m ≥ 2 and m3 = 1, and where m = 1. In the first
two cases, A,B have the form

A =


1

1
. . .

1
1

Sm

 , B =


Im(λ1) Re(λ1)
Re(λ1) − Im(λ1)

. . .
Im(λk) Re(λk)
Re(λk) − Im(λk)

Tm

 (6)

where λ1, λ
∗
1, . . . , λk, λ

∗
k ∈ C \R are distinct.

Case 1. In case 1, Sm = Tm = 01. Set

Ãδ =


1

1
. . .

1
1

δ

 , B̃δ =


Im(λ1) Re(λ1)
Re(λ1) − Im(λ1)

√
δRe(α1)√
δ Im(α1)

. . .
...

Im(λk) Re(λk)
Re(λk) − Im(λk)

√
δRe(αk)√
δ Im(αk)√

δRe(α1)
√
δ Im(α1) · · · √

δRe(αk)
√
δ Im(αk) δz


(7)

for some α ∈ Ck, z ∈ R, and δ > 0 to be chosen later. The eigenvalues of Ã−1
δ B̃δ

are equal to the eigenvalues of
J
. . .

J
1√
δ


−1

Ã−1
δ B̃δ


J
. . .

J
1√
δ



=


λ1

λ∗
1

α∗
1/

√
2

α1/
√
2

. . .
...

λk

λ∗
k

α∗
k/

√
2

αk/
√
2

−α∗
1 i

∗/
√
2 −α1i/

√
2 · · · −α∗

ki
∗/

√
2 −αki/

√
2 z

 .

The characteristic polynomial (in ξ) of this latter matrix is

(z − ξ)
k∏

i=1

(λi − ξ)(λ∗i − ξ) +
k∑

i=1

(
Im
(
α2
i

)
ξ − Im

(
α2
i λi

))∏
j ̸=i

(λj − ξ)(λ∗j − ξ) (8)

and is independent of δ > 0. As λi are all non-real, given any x, y ∈ Rk, it is
possible to construct α ∈ Ck such that

Im(α2
i ) = yi and − Im(α2

i λi) = xi, ∀i ∈ [k]. (9)

Setting α in this manner reduces the characteristic polynomial to

(z − ξ)
k∏

i=1

(λi − ξ)(λ∗i − ξ) +
k∑

i=1

(xi + yiξ)
∏
j ̸=i

(λj − ξ)(λ∗j − ξ). (10)
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It suffices to show that there exist x, y ∈ Rk and z ∈ R such that the roots of (10)
are all real, as we may take δ > 0 to zero independently of our choice of x, y, z.

Define the following polynomials.

fi(ξ) :=
∏
j ̸=i

(λj − ξ)(λ∗j − ξ), gi(ξ) := ξfi(ξ), ∀i ∈ [k], and

h(ξ) :=
k∏

i=1

(λi − ξ)(λ∗i − ξ).

As {λ1, λ
∗
1, . . . , λk, λ

∗
k} are distinct values in C\R, we have that {f1, g1, . . . , fk, gk, h}

are a basis for the degree-2k polynomials in ξ. Now pick 2k + 1 distinct values
ξ1, . . . , ξ2k+1 ∈ R. Note that {ξ1, . . . , ξ2k+1} are the roots to (10) if and only if
x, y ∈ Rn and z ∈ R satisfy

(
f1(ξ1) g1(ξ1) ··· fk(ξ1) gk(ξ1)

...
...

...
...

...
f1(ξ2k+1) g1(ξ2k+1) ··· fk(ξ2k+1) gk(ξ2k+1)

h(ξ1)
...

h(ξ2k+1)

) x1
y1
...
xk
yk
z

 =

(
ξ1h(ξ1)

...
ξ2k+1h(ξ2k+1)

)
.

(11)

Note that the matrix on the left is invertible (as {f1, g1, . . . , fk, gk, h} is independent
and the ξi are distinct) and real (as the ξi are real). Consequently, the matrix on
the left has a real inverse. Note also that the vector on the right is real. We deduce
that there exist x, y ∈ Rk (and thus α ∈ Ck) and z ∈ R such that the eigenvalues
of Ã−1

δ B̃δ are real and simple.

Case 2. In case 2, Sm =

(
Fnm

0
Fnm

)
and Tm = G2nm+1. Set

Ãδ =



1
1

. . .
1

1

Fnm

δ

Fnm


, and

B̃δ =



Im(λ1) Re(λ1)
Re(λ1) − Im(λ1)

√
δRe(α1)√
δ Im(α1)

. . .
...

Im(λk) Re(λk)
Re(λk) − Im(λk)

√
δRe(αk)√
δ Im(αk)

Gnm√
δRe(α1)

√
δ Im(α1) · · · √

δRe(αk)
√
δ Im(αk) δz e∗1

Gnm e1


(12)
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for some α ∈ Ck, z ∈ R, and δ > 0 to be chosen later. The eigenvalues of Ã−1
δ B̃δ

are equal to the eigenvalues of


J
. . .

J
Inm/

√
δ

1/
√
δ √

δInm



−1

Ã−1
δ B̃δ


J
. . .

J
Inm/

√
δ

1/
√
δ √

δInm



=



λ1

λ∗
1

α∗
1/

√
2

α1/
√
2

. . .
...

λk

λ∗
k

α∗
k/

√
2

αk/
√
2

FnmGnm enm

−(α1i)
∗/

√
2 −α1i/

√
2 · · · −(αki)

∗/
√
2 −αki/

√
2 z e⊺1

FnmGnm


.

The characteristic polynomial (in ξ) of this latter matrix is

ξ2nm

(
(z − ξ)

k∏
i=1

(λi − ξ)(λ∗i − ξ)

+
k∑

i=1

(
Im(α2

i )ξ − Im(α2
i λi)

)∏
j ̸=i

(λj − ξ)(λ∗j − ξ)

)
(13)

and is independent of δ > 0. As in Case 1 (cf. (8)), we may pick α ∈ Ck and z ∈ R
such that Ã−1

δ B̃δ has real (but no longer necessarily simple) eigenvalues. Finally,

applying Theorem 1, we deduce that for all δ > 0,
{
Ãδ, B̃δ

}
is ASDC. We conclude

that {A,B} is ASDC.

Case 3. In the final case, we have that m = m3 + m4 = 1. If m4 = 1 (so that
A = B = 0), it is clear that {A,B} is actually SDC. Finally, suppose m3 = 1 so
that

A =

(
Fnm

0
Fnm

)
, B = G2nm+1.

Then for δ ̸= 0, set

Ãδ =

(
Fnm

δ
Fnm

)
.

Note that Ã−1B is upper triangular with all diagonal entries equal to zero. Then
applying Theorem 1, we deduce that for all δ ̸= 0,

{
Ãδ, B

}
is ASDC. We conclude

that {A,B} is ASDC.
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Corollary 3 Let A = {A1, . . . , Am} in (1) and suppose span(A) = span {A,B} is

singular. Then for any ϵ > 0, there exist
∥∥Ãi −Ai

∥∥ ≤ ϵ such that

inf
x∈Rn

{
x⊺Ã1x+ 2b⊺1x+ c1 :

x⊺Ãix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L

}
(14)

is a diagonalizable QCQP. The matrices Ãi and an invertible matrix P diagonalizing

(14) can be computed via the construction in Theorem 2.

4 The ASDC property of nonsingular symmetric triples

In this section, we will prove the following characterization of the ASDC property
for nonsingular triples of symmetric matrices (henceforth, symmetric triples).

Theorem 3 Let {A,B,C} ⊆ Sn and suppose A is invertible. Then, {A,B,C} is

ASDC if and only if
{
A−1B,A−1C

}
are a pair of commuting matrices with real eigen-

values.

As always, the forward direction follows trivially from Proposition 1 and con-
tinuity. For the reverse direction, we will extend an inductive argument due to
Motzkin and Taussky [32] to show that we may repeatedly perturb either A−1B

or A−1C to increase the number of simple eigenvalues. In contrast to the original
argument in [32], which establishes that any commuting pair {S, T} ⊆ Cn×n is
almost simultaneously diagonalizable via similarity (and thus only needs to induc-
tively maintain commutativity of S and T ), for our proof we will further need to
maintain that A,B,C are symmetric matrices and that A−1B and A−1C have real
eigenvalues.

Our proof will require two technical facts about block matrices consisting of
upper triangular Toeplitz blocks. We present these facts below and defer their
proofs to Appendix B.

Definition 5 T ∈ Rni×nj is an upper triangular Toeplitz matrix if T is of the form

T =

0ni×(nj−ni)

t(1) t(2) ··· t(ni)

t(1)
...

...
... t(2)

t(1)

 or T =


t(1) t(2) ··· t(ni)

t(1)
...

...
... t(2)

t(1)

0(ni−nj)×nj


if ni ≤ nj and nj ≤ ni respectively.

Definition 6 Let (n1, . . . , nk) such that
∑

i ni = n. Let T(n1, . . . , nk) ⊆ Rn×n

denote the linear subspace of matrices T such that each block Ti,j (when the rows
and columns of T are partitioned according to (n1, . . . , nk)) is an upper triangular
Toeplitz matrix. When the partition (n1, . . . , nk) is clear from context, we will
simply write T.

The following fact characterizes the set of matrices which commute with a
nilpotent Jordan chain (see for example [38, Theorem 6]).

Lemma 4 Let (n1, . . . , nk) such that
∑

i ni = n. Let J ∈ Rn×n be a block diagonal

matrix with diagonal block Ji,i = FniGni , i.e., a nilpotent Jordan block of size ni.

Then, T ∈ Rn×n commutes with J if and only if T ∈ T.
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Definition 7 Let (n1, . . . , nk) such that
∑

i ni = n. Define the linear mapΠ(n1,...,nk) :

T(n1, . . . , nk) → Rk×k by

(Π(n1,...,nk)(T ))i,j =

{
T

(1)
i,j if ni = nj ,

0 else.

When the partition (n1, . . . , nk) is clear from context, we will simply write Π.

The following fact follows from the observation that the characteristic polyno-
mial of a matrix T ∈ T depends on only a few of its entries (see Lemma 11).

Lemma 5 Let (n1, . . . , nk) such that
∑

i ni = n. Then, for any T ∈ T, the matrices

T ∈ Rn×n and Π(T ) ∈ Rk×k have the same eigenvalues.

We are now ready to prove Theorem 3.

Proof of Theorem 3. It suffices to show that if
{
A−1B,A−1C

}
are a pair of com-

muting matrices with real eigenvalues, then {A,B,C} is ASDC. Note that any set
{A,B,C} ⊆ S1 is SDC. Thus, we may assume that n ≥ 2 and that the statement
is true inductively for all smaller n.

We make the following simplifying assumptions: Without loss of generality, we
may assume that either A−1B has multiple eigenvalues or that A−1B and A−1C

are both nilpotent. Indeed, if A−1B and A−1C both have a single eigenvalue,
then we may consider the basis {A,B + λBA,C + λCA} for span {A,B,C} where
A−1(B+λBA) = A−1B+λBI and A−1(C+λCA) = A−1C+λCI are both nilpotent.
We will work in the basis for Rn furnished by Proposition 3 so that A−1B is in
Jordan canonical form (note that m2 = m3 = m4 = 0 by the assumptions that A

is invertible and A−1B has real eigenvalues) and assume that the blocks of A−1B

are ordered first according to increasing eigenvalue then increasing block sizes.
We will break our proof into four cases: First, we will consider where A−1B

has multiple eigenvalues. The remaining three cases will consider when the Jordan
block structure of A−1B has: multiple block sizes, multiple blocks of the same size,
and a single block.

Case 1. Suppose A−1B has ℓ-many distinct eigenvalues. Write C as an ℓ× ℓ block
matrix according to the partition induced by the eigenvalues of A−1B. Then, as
A−1C and A−1B commute, we have that A−1C (perforce C) is block diagonal.
Thus, according to the block structure induced by the eigenvalues of A−1B, the
matrices A, B, C are jointly block diagonal, with each diagonal block satisfying
the conditions of the inductive hypothesis. We conclude that {A,B,C} is ASDC.

Case 2. Suppose A−1B and A−1C are nilpotent and that A−1B has distinct block
sizes. For concreteness, suppose A−1B has k blocks of size η = n1 = · · · = nk <

nk+1 ≤ · · · ≤ nm. By Proposition 3,

A = Diag(σ1Fη, . . . , σkFη, σk+1Fnk+1 , . . . , σmFnm)

for some σi ∈ {±1}. Set

C̃ = C + δDiag(σ1Fη, . . . , σkFη, 0nk+1 , . . . , 0nm). (15)
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Applying Lemma 4, we have that A−1C̃ commutes with A−1B and that C̃ ∈ Sn.
Let Π denote the linear map furnished by Lemma 5. As ni ̸= nj for all i ≤ k and
j ≥ k + 1, we have that Π(A−1C) can be written as a block diagonal matrix

Π(A−1C) =
(

Π(A−1C)1,1

Π(A−1C)2,2

)
with blocks of size k × k and (m − k) × (m − k) respectively. As Π preserves
eigenvalues for inputs in T, we have that Π(A−1C)1,1 and Π(A−1C)2,2 are both
nilpotent. Then, as A−1C̃ has the same eigenvalues as

Π(A−1C̃) =
(

Π(A−1C)1,1+δIk
Π(A−1C)2,2

)
,

we deduce that A−1C̃ has eigenvalues {0, δ}. We have reduced to case (1) whence{
A,B, C̃

}
is ASDC. We conclude that {A,B,C} is ASDC.

Case 3. Suppose A−1B and A−1C are nilpotent and that A−1B has Jordan blocks
all of the same dimension. For concreteness, suppose A−1B has m ≥ 2 Jordan
blocks of dimension η. In this case Proposition 3 states that

A = Diag(σ1, . . . , σm)⊗ Fη and B = Diag(σ1, . . . , σm)⊗Gη

where σi ∈ {±1}. Write C as a m ×m block matrix with blocks Ci,j ∈ Rη×η. By
Lemma 4, A−1C ∈ T and we may write

Ci,j = Fη

(
γ
(1)
i,j Iη +

η∑
ℓ=2

γ
(ℓ)
i,j (FηGη)

ℓ−1

)
.

Let Π denote the linear map furnished by Lemma 5. Let

Ā = Diag(σ1, . . . , σm) and C̄ =
(
γ
(1)
i,j

)
. (16)

Note that as C ∈ Sn, we have γ
(1)
i,j = γ

(1)
j,i , whence Ā, C̄ ∈ Sm. As Π preserves the

eigenvalues for inputs in T and Ā−1C̄ = Π(A−1C), we deduce that Ā−1C̄ has real
eigenvalues (in fact, the single eigenvalue 0). Then applying Lemma 3, there exists
C̄′ ∈ Sm such that

∥∥C̄ − C̄′∥∥ ≤ δ and Ā−1C̄′ has m-many distinct real eigenvalues.
Finally, set

C̃ = C + (C̄′ − C̄)⊗ Fη.

Then Lemma 4 implies that A−1B and A−1C̃ commute. Furthermore, by con-
struction, A−1C̃ has upper triangular Toeplitz blocks so that its eigenvalues are
the same as the eigenvalues of Π(A−1C̃) = Ā−1C̄′. We have reduced to case (1)
and

{
A,B, C̃

}
is ASDC. We conclude that {A,B,C} is also ASDC.



New notions of simultaneous diagonalizability 19

Case 4. Suppose A−1B and A−1C are nilpotent and that A−1B is a single Jor-
dan block. Then, by Proposition 3, A = σFn and B = σGn for some σ ∈ {±1}.
Furthermore, by Lemma 4 and the assumption that A−1C is nilpotent, we may
write

C = σFn

(
n∑

i=2

ci(FnGn)
i−1

)
for some c2, . . . , cn ∈ R.

If n = 2, then C = c2σG2. We may set

B̃ = σ(G2 + δH2) and C̃ = c2σ(G2 + δH2). (17)

Then,
{
A−1B̃, A−1C̃

}
are a pair of commuting matrices with real simple eigenval-

ues.
If n ≥ 3, set

B̃ = B + δσ(e1e
⊺
n + ene

⊺
1) and C̃ = C + σ(enγ

⊺ + γe⊺n) (18)

where γ ∈ Rn is defined recursively as γn = γn−1 = 0 and γi = δ(ci+1 + γi+1) for
i ∈ [n − 2]. A straightforward calculation shows that A−1B̃ and A−1C̃ commute
and both have real eigenvalues. Finally, as A−1B̃ has distinct eigenvalues {0, δ},
we have reduced to case (1) and

{
A, B̃, C̃

}
is ASDC. We conclude that {A,B,C}

is also ASDC.

Corollary 4 Let A = {A1, . . . , Am} in (1) and suppose span(A) = span {A,B,C}
where A is invertible. Furthermore, suppose A−1B and A−1C commute and have real

eigenvalues. Then, for any ϵ > 0, there exist
∥∥Ãi −Ai

∥∥ ≤ ϵ such that

inf
x∈Rn

{
x⊺Ã1x+ 2b⊺1x+ c1 :

x⊺Ãix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L

}
(19)

is a diagonalizable QCQP. The matrices Ãi and an invertible matrix P diagonalizing

(19) can be computed via the construction in Theorem 3.

5 Restricted SDC

In this section, we investigate a second new notion of simultaneous diagonalizabil-
ity called restricted SDC. We will see soon that we have in fact already seen this
property before in Section 3.

Definition 8 Let A ⊆ Sn and d ∈ N. We will say that A is d-restricted SDC (d-
RSDC) if there exist matrices Ā ∈ Sn+d containing A as its top-left n×n principal
submatrix for every A ∈ A such that

{
Ā : A ∈ A

}
is SDC.

We record some simple consequences of the d-RSDC property that follow from
Observation 1 and Lemma 2.

Observation 4 Let A ⊆ Sn and d ∈ N.

– A is d-RSDC if and only if {A1, . . . , Am} is d-RSDC for some basis {A1, . . . , Am}
of span(A).
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– If A is d-RSDC, then A is d′-RSDC for all d′ ≥ d.

The following lemma explains the connection between the d-RSDC property
and the ASDC property.

Lemma 6 Let A1, . . . , Am ∈ Sn and let d ∈ N. If A = {A1, . . . , Am} is d-RSDC, then

A⊕ 0d :=

{(
Ai

0d

)
: i ∈ [m]

}
is ASDC. On the other hand, if A ⊕ 0d is ASDC, then for all ϵ > 0, there exist

Ã1, . . . , Ãm ∈ Sn such that

– for all i ∈ [m], the spectral norm
∥∥Ai − Ãi

∥∥ ≤ ϵ, and

–
{
Ã1, . . . , Ãm

}
is d-RSDC.

Proof. First, suppose {A1, . . . , Am} is d-RSDC and let
{
Ã1, . . . , Ãm

}
⊆ Sn+d denote

the matrices furnished by d-RSDC. Next, let ϵ > 0 and set

P =

(
In √

ϵId

)
.

Clearly, P is invertible so that
{
P⊺ÃiP : i ∈ [m]

}
is also SDC. Then, note that

P⊺ÃiP = P⊺
(

Ai (Ãi)1,2
(Ãi)

∗
1,2 (Ãi)2,2

)
P =

(
Ai

√
ϵ(Ãi)1,2√

ϵ(Ãi)
∗
1,2 ϵ(Ãi)2,2

)
so that A⊕ 0d is ASDC.

Next, suppose A ⊕ 0d is ASDC and let ϵ > 0. Then, there exist Ā1, . . . , Ām ∈
Sn+d such that

∥∥Āi −Ai ⊕ 0d
∥∥ ≤ ϵ and

{
Ā1, . . . , Ām

}
is SDC. Finally, note that∥∥A1 − (Ā1)1,1

∥∥ ≤ ϵ.

Remark 4 While the restriction of an SDC set does not necessarily result in an SDC
set, there is a setting arising naturally when analyzing QCQPs in which the restric-
tion of an SDC set is again SDC. Specifically, let Q1, . . . , Qm ∈ Sn+1 where Qi has
Ai as its top-left n×n principal submatrix. Furthermore suppose that there exists
a positive definite matrix in span({A1, . . . , Am}). Then, if

{
Q1, . . . , Qm, en+1e

⊺
n+1

}
is SDC, so is {A1, . . . , Am}. In words, if the homogenized quadratic forms in a
QCQP, along with en+1e

⊺
n+1, are SDC, then so are the original quadratic forms

(under a standard “definiteness” assumption). See Appendix D for details.

5.1 1-restricted SDC

We record a recasting of Theorem 2 in terms of these new definitions.

Theorem 4 Let A,B ∈ Sn. Then for every ϵ > 0, there exist Ã, B̃ ∈ Sn such that∥∥A− Ã
∥∥ ,∥∥B − B̃

∥∥ ≤ ϵ and
{
Ã, B̃

}
is 1-RSDC. Furthermore, if A is invertible and

A−1B has simple eigenvalues, then {A,B} is itself 1-RSDC.

Proof. The first claim follows from Theorem 2 and Lemma 6 applied to {A,B}⊕01.
The second claim follows from the additional observation that if A is invertible
and A−1B has simple eigenvalues, then the construction of Theorem 2 follows case
1 and does not perturb either A or B (see also Algorithm 2).
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Algorithm 2 1-RSDC construction

Input: A, B ∈ Sn such that A is invertible and A−1B has simple eigenvalues
Output: Ã, B̃ ∈ Sn+1 such that Ã has A as its top-left submatrix, B̃ has B as its top-left
submatrix, and Ã, B̃ is SDC

1. Let P ∈ Rn×n denote the invertible matrix guaranteed by [39]; this can be computed
using an eigenvalue decomposition of A−1B. Then P ⊺AP = Diag(σ1, . . . , σr, F2, . . . , F2)
and P ⊺BP = Diag(σ1µ1, . . . , σrµr, T1, . . . , Tk). Here, σ1, . . . , σr ∈ {±1}, µ1, . . . , µr ∈ R
and for i ∈ [k], the matrix Ti has the form

Ti =

(
Im(λi) Re(λi)
Re(λi) − Im(λi)

)
for some λi ∈ C \ R.

2. Choose an arbitrary set of 2k + 1 distinct points ξ1, . . . , ξ2k+1 ∈ R
3. Solve for x, y ∈ Rk and z ∈ R in the linear system (11)
4. Let α ∈ Ck solve (9) and define γ ∈ Rr+2k as

γ =
(
01×k Re(α1) Im(α1) . . . Re(αk) Im(αk)

)⊺
.

5. Return

Ã =

(
A

1

)
, B̃ =

(
B P−⊺γ

γ⊺P−1 z

)
.

Corollary 5 Let A = {A1, . . . , Am} in (1) and suppose span(A) = {A,B}. Then,

for any ϵ > 0, there exist Āi ∈ Sn+1 such that
∥∥(Āi)1,1 −Ai

∥∥ ≤ ϵ and

inf
x∈Rn,w


(
x

w

)⊺

Ā1

(
x

w

)
+ 2b⊺1x+ c1 :

(
x

w

)⊺

Āi

(
x

w

)
+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L
w = 0


(20)

is a diagonalizable QCQP. If A is invertible and A−1B has simple eigenvalues, then

(Āi)1,1 can be taken to be equal to Ai. The matrices Āi and an invertible matrix P

diagonalizing (19) can be computed via Algorithms 1 and 2.

5.2 d-restricted SDC

Let {A,B} ⊆ Sn such that A is invertible and A−1B has simple eigenvalues. By
Observation 4 and Theorem 4, we have that {A,B} is d-RSDC for any d ≥ 1. In
this section, we record an alternate construction showing that {A,B} is d-RSDC
for d ≥ 1. This alternate construction applies Algorithm 2 on smaller blocks of
the canonical form and has empirically better numerical performance in QCQP
applications (see Section 7.2).

Theorem 5 Let A,B ∈ Sn such that A is invertible and A−1B has simple eigenvalues.

Then, {A,B} is d-RSDC for any d ≥ 1.

Proof. Without loss of generality, we may assume that A,B are in canonical form
(Proposition 3) and m1 = 0 (else consider the submatrix of A,B corresponding to
the remaining blocks).
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Partition [m] into d-many contiguous subintervals. Write A and B as diagonal
block matrices of diagonal block matrices according to the partition of [m]. In
other words, write A = Diag(A1, . . . , Ad) and B = Diag(B1, . . . , Bd) where each Ai

is a diagonal block matrix of F2-matrices and each Bi is a diagonal block matrix

with matrices of the form
(

Im(λ) Re(λ)
Re(λ) − Im(λ)

)
for λ ∈ C \R. Set

Ã =



A1
. . .

Ad

1
. . .

1


and B̃ =



B1 x1
. . .

. . .

Bd xd
x⊺1 z1

. . .
. . .

x⊺d zd


(21)

for z1, . . . , zd ∈ R and vectors x1, . . . , xd of the appropriate dimensions to be chosen
later. After a simultaneous permutation of the coordinates, we can write Ã and B̃

as diagonal block matrices with blocks of the form(
Ai

1

)
and

(
Bi xi
x⊺i zi

)
.

By Theorem 4 (summarized in Algorithm 2) and the assumption that A−1B has
simple eigenvalues, we may, for each i ∈ [d], pick xi ∈ Rn and zi ∈ R such that
the pair of matrices above is SDC. It remains to note that the diagonal block
concatenation of SDC matrices is SDC.

Corollary 6 Let A = {A1, . . . , Am} in (1) and suppose span(A) = {A,B}. Then,

for any ϵ > 0, there exist Āi ∈ Sn+d such that
∥∥(Āi)1,1 −Ai

∥∥ ≤ ϵ and

inf
x∈Rn,w∈Rd


(
x

w

)⊺

Ā1

(
x

w

)
+ 2b⊺1x+ c1 :

(
x

w

)⊺

Āi

(
x

w

)
+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L
w = 0


(22)

is a diagonalizable QCQP. If A is invertible and A−1B has simple eigenvalues, then

(Āi)1,1 can be taken to be equal to Ai. The matrices Āi and an invertible matrix P

diagonalizing (19) can be computed via Algorithms 1 and 3.

5.3 Relation between d-RSDC and a naive diagonalization

The following lemma states that the quantity d in d-RSDC is equivalent to the
number of additional vectors in Rn required to diagonalize a set of matrices in the
following sense.
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Algorithm 3 d-RSDC construction

Input: A, B ∈ Sn such that A is invertible and A−1B has simple eigenvalues
Output: Ã, B̃ ∈ Sn+d such that Ã has A as its top-left submatrix, B̃ has B as its top-left
submatrix, and Ã, B̃ is SDC

1. Let P ∈ Rn×n denote the invertible matrix guaranteed by [39]; this can be computed
using an eigenvalue decomposition of A−1B. Then P ⊺AP = Diag(σ1, . . . , σr, F2, . . . , F2)
and P ⊺BP = Diag(σ1µ1, . . . , σrµr, T1, . . . , Tk). Here, σ1, . . . , σr ∈ {±1}, µ1, . . . , µr ∈ R
and for i ∈ [k], the matrix Ti has the form

Ti =

(
Im(λi) Re(λi)
Re(λi) − Im(λi)

)
for some λi ∈ C \ R.

2. Partition [k] = κ1 ∪ . . . κd into contiguous subintervals where κi = [starti, endi]

3. For each i ∈ [d], apply Algorithm 2 to get xi ∈ R|κi| and zi ∈ R such that F2
...

F2

1

 and


Tstarti

...
Tendi

xi

x⊺
i zi


are SDC

4. Let Q := P ⊕ I1 and return

Q−⊺ÃQ−1 and Q−⊺B̃Q−1

where Ã and B̃ are defined in (21).

Lemma 7 Let A ⊆ Sn. Then A is d-RSDC if and only if there exists {ℓ1, . . . , ℓn+d} ⊆
Rn such that for each A ∈ A we can write

A =
n+d∑
i=1

µiℓiℓ
⊺
i

for some choice of µ ∈ Rn+d.

Proof. Suppose A is d-RSDC. Let Ā ⊆ Sn+d denote the SDC set furnished by the
definition of d-RSDC. Let ℓ̄1, . . . , ℓ̄n+d ∈ Rn+d be a basis diagonalizing Ā. Also
define ℓ1, . . . , ℓn+d ∈ Rn to be the vectors formed by taking the first n coordinates
of ℓ̄i. Now, suppose A ∈ A and let Ā ∈ Ā denote a matrix with A in its top-left
n× n minor. Then, there exists µ ∈ Rn+d such that

Ā =
n+d∑
i=1

µiℓ̄iℓ̄
⊺
i .

Note that the top-left block of Ā is A and the top-left block of ℓ̄iℓ̄
⊺
i is ℓiℓ

⊺
i . We

conclude that every A ∈ A can be written in the form

A =
n+d∑
i=1

µiℓiℓ
⊺
i

for some choice of µ. Note that as
{
ℓ̄i
}
spans Rn+d, it also holds that {ℓi} spans

Rn.
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In the reverse direction, suppose ℓ1, . . . , ℓn+d ∈ Rn span Rn and are such that
each A ∈ A can be written in the form A =

∑
i µiℓiℓ

⊺
i for some choice of µ. Form

the matrix L = (ℓ1, . . . , ℓn+d) ∈ Rn×(n+d). As this matrix has full column rank, it
can be extended to an invertible matrix L̄ ∈ R(n+d)×(n+d) where the top n rows
of L̄ coincide with L. Now, if A ∈ A is given by

∑n+d
i=1 µiℓiℓ

⊺
i , we also have that

L̄Diag(µ)L̄⊺

has A as its top-left n× n principal minor.

Remark 5 From this lemma, we see that any set of m matrices A = {A1, . . . , Am} ⊆
Sn is naively (m − 1)n-RSDC and that we can “lift” it to a diagonlizable set by
simply diagonalizing each matrix independently.

6 Obstructions to further generalization

In this section, we record explicit counterexamples to a priori plausible extensions
to Theorems 1 to 3.

6.1 Singular symmetric triples

In Theorem 2, we showed that any singular symmetric pair is ASDC. A natural
question to ask is whether any singular set of symmetric matrices (regardless of
the dimension of its span) is ASDC. The following theorem presents an obstruc-
tion to generalizations in this direction. Specifically, in contrast to Theorem 2
(where it was shown that singularity implies ASDC in the context of symmetric
pairs), Theorem 6 below shows that even symmetric triples with “large amounts”

of singularity can fail to be ASDC.

Theorem 6 Let {A = In, B,C} ⊆ Sn. Then, if d < rank([B,C])/2, the set{(
A

0d

)
,

(
B

0d

)
,

(
C

0d

)}
is not ASDC.

Proof. Suppose for the sake of contradiction that this set is ASDC. Let ϵ ∈ (0, 1/2)
and let

{
Ã, B̃, C̃

}
⊆ Sn+d denote an SDC set furnished by the ASDC assumption.

Without loss of generality, Ã has rank n+ d. Write

Ã =

(
Ã1,1 Ã1,2

Ã⊺
1,2 Ã2,2

)
.

Similarly decompose B̃ and C̃. As ϵ ∈ (0, 1/2), we have that Ã1,1 is invertible. Let

P =

(
Ã
−1/2
1,1 −Ã−1

1,1Ã1,2

0 Id

)
.
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Then as P is invertible,
{
P⊺ÃP, P⊺B̃P, P⊺C̃P

}
is again SDC. Note that P⊺ÃP has

the form

P⊺ÃP =

(
In

Ã2,2 − Ã⊺
1,2Ã

−1
1,1Ã1,2

)
.

Furthermore,∥∥P⊺B̃P −B
∥∥

=
∥∥(P − In+d)

⊺B̃(P − In+d) + B̃(P − In+d) + (P − In+d)
⊺B̃ + (B̃ −B)

∥∥
≤
∥∥B̃∥∥ ∥P − In+d∥2 + 2

∥∥B̃∥∥ ∥P − In+d∥+ ϵ.

We claim that ∥P − In+d∥ can be bounded in terms of ϵ:

∥P − In+d∥ ≤
∥∥∥Ã−1/2

1,1 − I
∥∥∥+ ∥∥∥Ã−1

1,1

∥∥∥∥∥Ã1,2

∥∥
≤ max

{
1√
1− ϵ

− 1, 1− 1√
1 + ϵ

}
+

ϵ

1− ϵ

≤ 2ϵ

1− ϵ
.

Here, we have used the fact that
∥∥Ã−A⊕ 0d

∥∥ ≤ ϵ, so that
∥∥Ã1,1 − In

∥∥ ≤ ϵ and∥∥Ã1,2

∥∥ ≤ ϵ. Consequently, as we may also bound
∥∥B̃∥∥ ≤ ∥B∥+ ϵ, we deduce that

for any δ > 0, we can pick ϵ ∈ (0, 1/2) small enough such that
∥∥P⊺B̃P −B

∥∥ ≤ δ.

An identical calculation holds for
∥∥P⊺C̃P − C

∥∥. We conclude that for all δ > 0,
there exist Ā, B̄, C̄ of the form

Ā =

(
In

Ā2,2

)
, B̄ =

(
B̄1,1 B̄1,2

B̄⊺
1,2 B̄2,2

)
, C̄ =

(
C̄1,1 C̄1,2

C̄⊺
1,2 C̄2,2

)
such that

{
Ā, B̄, C̄

}
is SDC,

∥∥A− Ā
∥∥ ,∥∥B − B̄

∥∥ ,∥∥C − C̄
∥∥ ≤ δ, and Ā2,2 is invert-

ible. Then by Proposition 1, the top-left block of the commutator [Ā−1B̄, Ā−1C̄]
is equal to 0n. Expanding this top-left block, we deduce

[B̄1,1, C̄1,1] = C̄1,2Ā
−1
2,2B̄

⊺
1,2 − B̄1,2Ā

−1
2,2C̄

⊺
1,2. (23)

Finally, by lower semi-continuity of rank, we have rank([B̄1,1, C̄1,1]) ≥ rank([B,C])
for all δ > 0 small enough. This is a contradiction as the expression on the right
of (23) has rank at most 2d < rank([B,C]).

This same construction can be viewed as an obstruction to generalizations of
Theorem 4 to symmetric triples with constant d.

Corollary 7 Let {A = In, B,C} ⊆ Sn. Then A−1B and A−1C are both diagonalizable

with real eigenvalues and {A,B,C} is not d-RSDC for any d < rank([B,C])/2.

Remark 6 Note that for all n ∈ N, there exist B, C ∈ S2n such that rank([B,C]) =
2n. For example, set

B =

(
In

−In

)
, C =

(
In

In

)
.



26 Alex L. Wang, Rujun Jiang

Then, {A = I2n, B,C} ⊆ S2n is a nonsingular symmetric triple such that A−1B

and A−1C are both diagonalizable. On the other hand, Corollary 7 and Theorem 6
imply that {(

A

0n−1

)
,

(
B

0n−1

)
,

(
C

0n−1

)}
is not ASDC and {A,B,C} is not (n− 1)-RSDC.

6.2 Nonsingular septuples

We may reinterpret Theorems 1 and 3 as saying that if A satisfies dim(span(A)) ≤
3 and contains an invertible matrix S, then A is ASDC if and only if S−1A consists
of a set of commuting matrices with real eigenvalues. A natural question to ask is
whether the same statement holds without any assumption on the dimension of
the span of A. Theorem 7 below presents an obstruction to generalizations in this
direction. Specifically, Theorem 7 constructs a non-ASDC set A = {A1, . . . , A7} ⊆
S6 where A1 is invertible and A−1

1 A consists of a set of commuting matrices with
real eigenvalues.

The following lemma adapts a technique introduced by O’meara and Vin-
sonhaler [34] for studying the almost simultaneously diagonalizable via similarity
property of subsets of Cn×n.

Lemma 8 Let A = {A1, . . . , Am} ⊆ Sn where A1 ∈ A is invertible. If A is SDC, then

dim(R[A−1
1 A]) ≤ n. Here, R[A−1

1 A] is the real algebra generated by A−1
1 A.

Proof. Let P denote the invertible matrix furnished by SDC and suppose P⊺AiP =
Di. Then,

dim
(
R
[
A−1

1 A
])

= dim
(
R
[{

D−1
1 Di : i ∈ [m]

}])
≤ n.

The following corollary then follows by lower semi-continuity.

Corollary 8 Let A = {A1, . . . , Am} ⊆ Sn where A1 ∈ A is invertible. If A is ASDC,

then dim(R[A−1
1 A]) ≤ n. Here, R[A−1

1 A] is the real algebra generated by A−1
1 A.

Theorem 7 There exists a set A = {A1, . . . , A7} ⊆ S6 such that A1 is invertible,

A−1
1 A is a set of commuting matrices with real eigenvalues, and A is not ASDC.7

Proof. Set

A1 =

 1
1

1
1

1
1

 , A2 =

 0
0

0
1

0
0

 , A3 =

 0
0

0
1

1
0

 ,

A4 =

 0
0

0
1

0
1

 , A5 =

 0
0

0
0

1
0

 ,

A6 =

 0
0

0
0

1
1

 , A7 =

 0
0

0
0

0
1

 .

7 The analogous example in the complex setting states that there exists a set A =
{A1, . . . , A5} ⊆ H4 such that A1 is invertible, A−1

1 A is a set of commuting matrices with
real eigenvalues, and A is not ASDC. See Appendix C.
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Note that A1 is invertible. It is not hard to verify that A−1
1 A forms a set of

commuting matrices with real eigenvalues. On the other hand, note that

R[A−1
1 A] =


 a d f g

a c e f
a b c d

a
a

a

 : a, b, c, d, e, f, g ∈ R


so that dim(R[A−1

1 A]) = 7 > 6 = n. We deduce from Corollary 8 that A is not

ASDC.

7 Applications to QCQPs

In this section, we suggest several applications of diagonalization to optimizing
QCQPs. We begin by proving properties regarding the SDP and SOCP relax-
ations of diagonal QCQPs with bound constraints. Note that QCQPs with bound
constraints are the main problems of interest within spatial branch and bound
(BB) schemes for QCQPs. These results give heuristic reasons why one might ex-
pect the SOCP relaxation to give strong yet efficiently computable lower bounds
within BB schemes. These results serve as additional motivation for the ASDC
and d-RSDC properties. We then examine these assertions numerically with pre-
liminary computational experiments.

7.1 The SOCP relaxation of a diagonal QCQP with bound constraints

Consider solving a QCQP over Rn of the form (1) within a BB scheme. At each
node of the BB tree, we encounter the original QCQP with additional bound
constraints,

inf
x∈Rn

x⊺A1x+ 2b⊺1x+ c1 :
x⊺Aix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L
x ∈ [ℓ, u]

 , (24)

and desire to construct and solve strong convex relaxations of (24).
One powerful method for constructing such convex relaxations combines the

reformulation-linearization technique with semidefinite programming [1]. We begin
by linearizing (24) using the variable Y = xx⊺. Specifically, replace x⊺Aix with
⟨Ai, Y ⟩ and include the constraint Y = xx⊺. Then, relax the pair of constraints
x ∈ [ℓ, u] and Y = xx⊺ to the constraint that (x, Y ) belong to the set

SSDP :=

(x, Y ) ∈ Rn × Sn :

Yi,j ≥ ℓjxi + ℓixj − ℓjℓj , ∀i, j
Yi,j ≤ ujxi + ℓixj − ujℓi, ∀i, j
Yi,j ≥ ujxi + uixj − uiuj , ∀i, j
Y ⪰ xx⊺

 .

The SDP+RLT relaxation then reads

inf
x∈Rn,Y ∈Sn

⟨A1, Y ⟩+ 2b⊺1x+ c1 :
⟨Ai, Y ⟩+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L
(x, Y ) ∈ SSDP

 . (25)
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Note that for diagonal QCQPs (i.e., the setting where A1, . . . , Am are diago-
nal) that ⟨Ai, Y ⟩ = diag(Ai)

⊺ diag(Y ) so that the SDP+RLT relaxation does not
depend on the off-diagonal entries of Y . In particular, we may replace the variable
Y ∈ Sn with a variable y ∈ Rn representing its diagonal entries. Naturally, we then
replace the term the term ⟨Ai, Y ⟩ and the constraint (x, Y ) ∈ SSDP with the term
diag(Ai)

⊺y and the constraint

(x, y) ∈ SSOCP := {(x,diag(Y )) : (x, Y ) ∈ SSDP} .

The following lemma shows that SSOCP is SOC-representable so that the resulting
relaxation is in fact an SOCP. Thus, the SDP+RLT relaxation of a QCQP with
bound constraints can be solved substantially faster when A1, . . . , Am are diagonal.

In the remainder of this section, let ◦ denote the elementwise product between
two vectors. The following lemma is elementary and is not new (see for example
[11, Section 2]).

Lemma 9 The following identities hold

SSOCP := {(x,diag(Y )) : (x, Y ) ∈ SSDP}
=
{
(x, y) ∈ Rn ×Rn : x ◦ x ≤ y ≤ (u+ ℓ) ◦ x− u ◦ ℓ

}
= conv

{
(x, y) ∈ Rn ×Rn :

x ∈ [ℓ, u]
x ◦ x = y

}
.

In particular, SSOCP is SOC-representable.

Proof. For notational convenience, let S1, S2, S3 denote the three sets on the right
in order. Note SSOCP = S1 by definition. We will show S1 ⊆ S2 = S3 ⊆ S1.

The containment S1 ⊆ S2 follows by definition: Given (x, Y ) ∈ SSDP, we have
that diag(Y ) ≥ x ◦x by the SDP constraint and diag(Y ) ≤ (u+ ℓ) ◦x−u ◦ ℓ by the
RLT constraints.

The identity S2 = S3 follows the well-known (and easy to verify) fact that in
one-dimension{

(xi, yi) ∈ R2 :
yi ≥ x2i
yi ≤ (ui + ℓi)xi − uiℓi

}
= conv

{
(xi, yi) ∈ R2 :

xi ∈ [ℓi, ui]
x2i = yi

}
and the fact that direct products commute with convex hulls.

Finally, suppose (x, y) ∈ Rn ×Rn satisfies x ∈ [ℓ, u] and y = x ◦ x. Set Y = xx⊺

so that diag(Y ) = y. It is straightforward to show that (x, Y ) ∈ SSDP so that
(x, y) ∈ S1. Then as S1 is convex, we have that S3 ⊆ S1.

The following corollary shows how to construct optimizers of (25) with bounded
rank when A1, . . . , Am are diagonal. The bound depends only on m and the com-
plexity of L ∩ [ℓ, u]. This gives a heuristic reason why one would expect the
SDP+RLT relaxation (and hence the SOCP+RLT relaxation) of a diagonal QCQP
with bound constraints to be stronger than that of a general QCQP with bound
constraints, especially when m is small and L is simple.

Lemma 10 Suppose A1, . . . , Am are diagonal and that L ∩ [ℓ, u] can be expressed as

the intersection of [ℓ, u] with k additional linear (in)equality constraints. If (25) has a

solution, then it has a solution (x∗, Y ∗) such that

rank

(
Y ∗ x∗

x∗⊺ 1

)
≤ m+ k.
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Proof. By assumption there exists an affine function L : Rn → Rk such that

[ℓ, u] ∩ L = [ℓ, u] ∩
{
x ∈ Rn : L(x)i �i 0, ∀i ∈ [k]

}
where �i ∈ {≤,=}. Define Q : Rn ×Rn → Rm by

Q(x, y)i = ⟨diag(Ai), y⟩+ 2b⊺i x+ ci, ∀i ∈ [m]

and let Q̃ : Rn × Rn → Rm+k denote the affine function mapping (x, y) 7→
(Q(x, y), L(x)).

Let (x∗, Y ∗) denote an optimizer of (25) and set y∗ = diag(Y ∗). By Lemma 9,
there exist points x(i) ∈ [ℓ, u] and convex combination weights αi > 0 such that
(x∗, y∗) =

∑
i αi(x

(i), x(i)◦x(i)). Then, by linearity, we have Q̃(x∗, y∗) =
∑

i αiQ̃(x(i), x(i)◦
x(i)).

We claim that
{
Q̃(x(i), x(i) ◦ x(i))

}
i
span an affine subspace of dimension < m+

k. Indeed, supposing otherwise, Q̃(x∗, y∗) is in the interior of conv
{
Q̃(x(i), x(i) ◦ x(i))

}
i
.

Thus, there exists (x′, y′) ∈ SSOCP achieving Q̃(x′, y′) = Q̃(x∗, y∗) − ϵe1 for some
ϵ > 0. This contradicts optimality of (x∗, Y ∗).

Applying Carathéodory’s Theorem, (x∗, y∗) is a convex combination of at most

m+k points from
{
(x(i), x(i) ◦ x(i))

}
, say (x∗, y∗) =

∑m+k
i=1 αi(x

(i), x(i)◦x(i)). Then,

m+k∑
i=1

αi

(
x(i)x(i)⊺ x(i)

x(i)⊺ 1

)

is an optimal solution to (25) with rank ≤ m+ k.

7.2 Numerical results

In this subsection, we present preliminary numerical results on diagonalization and
the d-RSDC property in solving QCQP problems with one quadratic constraint
and additional linear constraints. This restricted class of QCQPs is still NP-hard in
general—as mentioned in the introduction, even the problem of minimizing a gen-
eral quadratic function over the hypercube is NP-hard. Problems in this form, and
their variants, have received recent interest in the area of optimal portfolio delever-
aging [29], the trust region method for solving constrained optimization problems,
robust optimization problems under matrix norm or polyhedral uncertainty [21],
portfolio selection models with complementarity constraints in the presence of lin-
ear transaction costs [9, 45], and as subproblems in iterative algorithms for more
general optimization problems [6, 20].

We will consider random instances of the following problem

min
x∈Rn

{
x⊺A1x :

x⊺A2x+ 2b⊺2x ≤ 1
x ∈ L

}
(26)

where A1, A2 ∈ Sn, b2 ∈ Rn, and L ⊆ Rn is a polytope.
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Random model. We will consider a family of distributions over instances of (26)
parameterized by n ∈ N and k ∈ N0. Here, k will parameterize the number of (pairs
of) complex eigenvalues of A−1

1 A2. Specifically, given (n, k) such that 2k ≤ n:

1. Let r = n− 2k.
2. Generate a random orthogonal matrix V by taking M to be a random n × n

matrix with entries i.i.d. N(0, 1) and then taking V to be a matrix of left
singular vectors of M . Let σ1, . . . , σr be i.i.d. Rademacher random variables.
Let µ1, . . . , µr be i.i.d. N(0, 1) random variables. Let x1, . . . , xk, y1, . . . , yk be
i.i.d. N(0, 1) random variables. Then, set

A1 = V ⊺ Diag(σ1, . . . , σr, F2, . . . , F2)V

A2 = V ⊺ Diag(σ1µ1, . . . , σrµr, T1, . . . , Tk)V.

Here, Ti ∈ S2 is the random matrix
( xi yi
yi −xi

)
.

3. Let the entries of b2 be i.i.d. N(0, 1) random variables, and L =
(

I
−I

)
N , where

the entries of N ∈ Rn×n are i.i.d. N(0, 1) random variables. This ensures that
the set L := {x : Lx ≤ 1} is bounded almost surely.

Note that Theorem 4 (respectively, Theorem 5) implies that {A1, A2} is almost
surely 1-RSDC (respectively, k-RSDC) in this random model.

Branch and bound methods. We use BB methods to solve different reformulations
of (26) with and without diagonalization.

We implement two classes of BB methods. The first class, the SDP-based BB
method, uses a simplified SDP+RLT relaxation for computing a lower bound at
each node. Specifically, we lower bound the value of (26) with the additional box
constraint x ∈ [ℓ, u] by

min
x∈Rn, Y ∈Sn

⟨A1, Y ⟩ :

⟨Ai, Y ⟩+ 2b⊺2x− 1 ≤ 0
x ∈ L
x ∈ [ℓ, u]
diag(Y ) ≤ (u+ ℓ) ◦ x− u ◦ ℓ
Y ⪰ xx⊤

 . (27)

At the root node, we set [ℓ, u] to be coordinate-wise lower and upper bounds on L.
Note that in contrast to the full SDP+RLT relaxation (see (25)), we only impose
RLT constraints on the diagonal entries of Y to strike a balance between bound
quality and computational cost. This method then applies a spatial BB rule for
each coordinate xi and updates the values of [ℓ, u].

The second class, the SOCP-based BB methods, first diagonalize (26) before
applying a BB scheme. The method of diagonalization differs across the differ-
ent SOCP-based BB methods but the BB part is the same. Suppose we have
already diagonalized (26) so that Ai is a diagonal matrix for each i = 1, 2. Write
Ai = Diag(a+i ) + Diag(a−i ), where a+i , a−i ∈ Rn are nonnegative and nonpositive
respectively. Let I = supp(a−1 )∪ supp(a−2 ). The SOCP-based BB method uses the
SOCP+RLT relaxation for computing a lower bound at each node. Specifically
we lower bound the value of (26) (assuming that the Ais are diagonal) with the
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additional box constraint x ∈ [ℓ, u] by

min
x∈Rn, y∈R|I|

x⊺ Diag(a+1 )x+ (a−1 )
⊺y :

x⊺ Diag(a+2 )x+ (a−2 )
⊺y + 2b⊺2x− 1 ≤ 0

x ∈ L
x ∈ [ℓ, u]
x2ji ≤ yi ≤ (uji + ℓji)xji − ujiℓji , ∀ji ∈ I

 .

(28)
Again, at the root node, we set [ℓ, u] to be coordinate-wise lower and upper bounds
on L. This method then applies a spatial BB rule for each coordinate xji such that
ji ∈ I and updates [ℓ, u].

In both methods, we use a successive convex approximation [30], which lin-
earizes nonconvex terms in the quadratic objective and constraint, to attempt to
construct feasible solutions and good upper bounds.

In more detail, we implemented the following five BB methods for solving
instances of (26).

– SDPBB solves (26) directly using the SDP-based BB method.
– SDCBB is a solution method which can only be applied when {A1, A2} is already

SDC. In this case (letting P denote the corresponding invertible matrix), SDCBB
reformulates (26) as

min
x∈Rn

{
x⊺(P⊺A1P )x :

x⊺(P⊺A2P )x+ 2(P⊺b2)
⊺x ≤ 1

LPx ≤ 1,

}
(29)

and solves this reformulation using the SOCP-based BB method.
– 1-RSDCBB applies Algorithm 2 to construct an SDC pair

{
Ã1, Ã2

}
∈ Sn+1

whose top-left n × n principal submatrices are A1 and A2, respectively. Let
P ∈ R(n+1)×(n+1) denote the invertible matrix furnished by the SDC prop-
erty of

{
Ã1, Ã2

}
. Also, set b̃2 = (b⊺2, 0)

⊺ and L̃ = (L, 0m,1). Then, 1-RSDCBB
reformulates (26) as

inf
w∈Rn+1

w⊺(P⊺Ã1P )w :
w⊺(P⊺Ã2P )w + 2(P⊺b̃2)

⊺w ≤ 1
(L̃P )w ≤ 1
(Pw)n+1 = 0

 (30)

and solves this reformulation using the SOCP-based BB method. Note that for
this reformulation, L is the set of w ∈ Rn+1 satisfying both the linear inequality
and linear equality constraints.

– k-RSDCBB applies Algorithm 3 with d = k to construct an SDC pair
{
Ã1, Ã2

}
∈

Sn+k whose top-left n×n principal submatrices are A1 and A2, respectively. Let
P ∈ R(n+k)×(n+k) denote the invertible matrix furnished by the SDC property
of
{
Ã1, Ã2

}
. Also, set b̃2 = (b⊺2, 0k,1)

⊺ and L̃ = (L, 0m,k). Then, k-RSDCBB

reformulates (26) as

inf
w∈Rn+1

w⊺(P⊺Ã1P )w :
w⊺(P⊺Ã2P )w + 2(P⊺b̃2)

⊺w ≤ 1
(L̃P )w ≤ 1
(Pw)n+1 = (Pw)n+2 = · · · = (Pw)n+k = 0

 (31)

and solves this reformulation using the SOCP-based BB method. Note that for
this reformulation, L is the set of w ∈ Rn+k satisfying both the linear inequality
and linear equality constraints.
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– eigBB first performs an eigenvalue decomposition on A1 to write D1 = P⊺
1 A1P1,

where D1 is a diagonal matrix. Then, it performs a second eigenvalue decom-
position to write D2 = P⊺

2 (P
⊺
1 A2P1)P2, where D2 is a diagonal matrix. Finally,

eigBB reformulates (26) as

inf
y,z∈Rn

y⊺D1y :
z⊺D2z + 2(P⊺

1 b2)
⊺y + c2 ≤ 1

(LP1)y ≤ 1
y = P2z

 (32)

and solves this reformulation using the SOCP-based BB method. Note that for
this reformulation, L is the set of (y, z) ∈ Rn × Rn satisfying both the linear
inequality and linear equality constraints.

All experiments are implemented using MATLAB R2021a on a PC running
Windows 10 Intel(R) Core(TM) i9-10900KF CPU (3.70GHz) and 64GB RAM. All
the SDP and SOCP problems in the BB methods are solved by the commercial
solver MOSEK [31] through its Matlab interface.

Remark 7 SDCBB, 1-RSDCBB, k-RSDCBB, and eigBB can be thought of as different re-
formulations within a parameterized family of reformulations of (26). Specifically,
these four algorithms reformulate (26) as diagonal QCQPs with n, n + 1, n + k,
and 2n variables respectively.

In fact, the reformulation (32) used in eigBB is exactly the reformulation that
would arise in (31) when using the naive n-RSDC construction (see Remark 5
and Lemma 7). Specifically, if D1 = U⊺

1A1U1 and D2 = U⊺
2A2U2 where Ui are

orthogonal and Di are diagonal, then {A1, A2} is n-RSDC via the lifting

Ā1 = P−⊺
(
D1

0

)
P−1 and Ā2 = P−⊺

(
0
D2

)
P−1,

where

P−⊺ =

(
U1 U2

0 I

)
and P =

(
U1 0

−U⊺
2U1 I

)
.

Also, set b̃2 = (b⊺2, 0n,1)
⊺ and L̃ = (L, 0m,n). Then, the n-RSDC reformulation

reads as

inf
w=(y,z)∈R2n

w⊺
(
D1

0

)
w :

w⊺

(
0
D2

)
w + 2(P⊺b̃2)

⊺w ≤ 1

(L̃P )w ≤ 1
(Pw)n+1 = (Pw)n+2 = · · · = (Pw)2n = 0


= inf

(y,z)∈R2n

y⊺D1y :
z⊺D2z + 2b⊺2(U1y) ≤ 1
L(U1y) ≤ 1
y = U⊺

1U2z

 .

This is exactly the reformulation in (32).
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Experiment setup. We tested the solution methods on random instances for vari-
ous settings of (n, k). For k = 0, i.e., the case where A1 and A2 are guaranteed to
be SDC, we compared SDPBB, SDCBB, and eigBB. For k > 0, we compared SDPBB,
1-RSDCBB, k-RSDCBB, and eigBB. For each (n, k), we generated 5 random problems
and used the command boxplot in MATLAB to present the statistics. Each pro-
cedure was terminated when the CPU time reached 1800 seconds or when the
relative gap (between the objective value of the current solution and the best
lower bound) fell below the default tolerance threshold, 10−4. In all of our figures
and tables, we set

Gap =
vbest − v0
|vbest|

× 100,

where v0 is the initial lower bound computed from the corresponding convex re-
laxation, and vbest is the best upper bound computed within the BB method.
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Fig. 1 Comparison of SDPBB, SDCBB and eigBB for the case with k = 0.

Comparison for the SDC case. We first test instances where {A1, A2} is SDC, i.e.,
k = 0, for n = 10, 20, 30, 40, 50. The results on CPU time, relative gap, and
number of explored nodes in the search tree are reported in Figure 1. Figure 1
shows us that SDCBB performs the best in general, i.e., SDCBB achieves the lowest
relative gap and smallest CPU time across all tested values of n. Both of the
SOCP-based methods are much more efficient than SDPBB. In fact, SDPBB fails to
solve any of the instances to relative gap 10−4 when n > 20 and fails on four of the
five instances with n = 20. Moreover, for n = 10, we observe that the SDP-based
BB method explores more nodes than either of the SOCP-based BB methods, even
though the SDP lower bounds are computationally more expensive than the SOCP
lower bounds. Indeed, we will see soon that the SOCP relaxation experimentally
yields tighter lower bounds (resulting in fewer search tree nodes) than the SDP
relaxation. We also observe that eigBB is comparable to but slightly less efficient
than SDCBB. Specifically, we note that SDCBB and eigBB explore similar numbers of
nodes but that SDCBB does so in comparable or less time.
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Fig. 2 Comparison of initial bound and time between SDP and SOCP relaxations for instances
of different dimensions.

To further understand the performance between the SDP-based and SOCP-
based BB methods, we compare initial bound quality and CPU time for SDPBB,
SDCBB and eigBB in the case k = 0. For Figure 2 only, define

Gap =
vSDCBB − v0
|vSDCBB|

× 100,

where v0 is the initial lower bound computed by SDPBB, SDCBB or eigBB and vSDCBB
is the best upper bound computed by SDCBB after 1800 seconds. Figure 2 shows
that both SOCP relaxations are faster to compute than the SDP relaxation, as
expected. More interestingly, both SOCP relaxations provide a better initial lower
bound as can be seen by the fact that the gap is significantly smaller for the
SOCP relaxations than it is for the SDP relaxation. See Section 7.1 for heuristic
explanations why we would expect this to hold. Both observations in Figure 2
suggest that diagonalization can be used within branch and bound schemes to
solve QCQPs more efficiently.

Comparing SDCBB and eigBB in Figure 2, we see that eigBB generally pro-
duces tighter lower bounds but SDCBB needs less computation time to solve its
relaxation. This parallels the observation in Figure 1 that SDCBB is capable of ex-
ploring more nodes than eigBB in similar amounts of time. We believe that SDCBB
solves its relaxation faster simply because its diagonal reformulation is smaller.
Indeed, SDCBB solves an SOCP (29) with

(
n+

∣∣supp(a−1 ) ∪ supp(a−2 )
∣∣)-many vari-

ables while eigBB solves an SOCP (32) with roughly twice as many variables:(
2n+

∣∣supp(a−1 )∣∣+ ∣∣supp(a−2 )∣∣)-many variables.
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Fig. 3 Comparison of SDPBB, k-RSDCBB and eigBB for non-SDC instances.

Comparison for the non-SDC case. We now consider the case where {A1, A2} is not
SDC, i.e., k > 0. We tested SDPBB, 1-RSDCBB, k-RSDCBB and eigBB for n = 10, 20, 30
and k = 1, 1 + n

10 , 1 +
2n
10 , 1 +

3n
10 , 1 +

4n
10 . The results on CPU time, relative gap,

and number of explored nodes in the search tree for SDPBB, k-RSDCBB and eigBB

are reported in Figure 3. Figure 3 indicates that both k-RSDCBB and eigBB largely
outperform SDPBB. Indeed, SDPBB cannot solve most instances in the time limit,
evidenced from the left plot in Figure 3, while k-RSDCBB and eigBB can solve more
instances and have lower relative gaps for unsolved instances in the time limit.
In general, k-RSDCBB and eigBB are comparable and eigBB is slightly better than
k-RSDCBB.

It remains to comment on the numerical performance of 1-RSDCBB. Experi-
mentally, we observed that the 1-RSDC construction (Algorithm 2) yields very
large condition numbers for the P matrices in (30) (e.g., larger than 1e6). This
leads to inaccurate solutions or numerical failures in MOSEK when solving the
SOCP+RLT relaxation, especially for k ≥ 5. Note also that 1-RSDCBB coincides
with k-RSDCBB for k = 1. Thus, we compare the three SOCP-based BB methods,
1-RSDCBB, k-RSDCBB, and eigBB, for values of 1 < k < 5 in Table 1.

One may observe that, for n = 10, 1-RSDCBB seems to perform worse (compared
to 1-RSDCBB and eigBB) as k increases. This trend can be explained by observing
that the condition numbers of the P matrices for (30) are likely to “blow up” as
k increases (see the two rightmost columns of Table 1). In particular, we observed
that the lower and upper bounds that we computed for the decision variables (i.e.,
the values of ℓ and u at the root node) in k-RSDCBB and eigBB were relatively
small intervals, while the corresponding bounds for those in 1-RSDCBB were often
much larger (e.g., on the order of 1000 times larger for k = 3). Comparing the
rightmost two columns of Table 1, we see that the condition numbers of the in-
vertible matrices P that we construct are often much smaller for k-RSDCBB than
for 1-RSDCBB, especially as k gets larger. We believe this explains why k-RSDCBB

generally outperforms 1-RSDCBB for larger values of the parameter k. Finally, we
observe that for the last instances in (10,4) and (30,4), 1-RSDCBB returned solu-
tions without reaching the prescribed gap or CPU times. We believe that this was
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(n, k)
1-RSDCBB k-RSDCBB eigBB cond num

time node gap (%) time node gap (%) time node gap (%) 1-RSDC 2-RSDC

(10,2) 5.73 2830 0.00 9.68 4582 0.00 3.02 1335 0.01 5.14e+01 3.79e+00
(10,2) 27.87 11462 0.00 42.68 17944 0.00 35.49 13335 0.00 2.78e+01 5.09e+00
(10,2) 30.82 13764 0.00 6.52 2995 0.00 11.11 4234 0.00 4.70e+02 4.54e+00
(10,2) 2.55 972 0.00 0.77 331 0.00 0.79 299 0.00 4.22e+02 2.25e+00
(10,2) 15.84 4423 0.00 10.23 4045 0.01 4.27 1521 0.01 1.59e+02 2.37e+00
(10,3) 2.71 1264 0.01 0.45 203 0.01 0.57 264 0.01 2.29e+02 2.72e+00
(10,3) 16.67 6848 0.00 13.15 5899 0.00 14.04 5295 0.00 1.89e+02 4.87e+00
(10,3) 19.55 8176 0.01 40.75 17257 0.01 10.04 4056 0.00 5.36e+01 3.42e+00
(10,3) 1.91 789 0.00 0.08 29 0.01 0.06 19 0.00 1.68e+03 2.24e+00
(10,3) 54.33 20000 0.01 2.36 1080 0.01 1.06 402 0.01 2.28e+03 1.44e+01
(10,4) 259.95 69602 0.01 11.95 5289 0.01 1.97 879 0.01 4.37e+03 3.31e+00
(10,4) 1800.05 147765 23.56 7.93 3746 0.00 3.13 1414 0.00 1.17e+04 8.04e+00
(10,4) 46.22 19976 0.01 74.85 32075 0.01 16.55 7295 0.01 3.63e+02 7.57e+01
(10,4) 1800.08 130796 158.72 5.81 2381 0.01 4.61 1858 0.00 2.10e+04 6.55e+00
(10,4) 77.54 16565 1.61 50.20 15150 0.01 3.71 1427 0.01 2.73e+06 2.49e+01

(20,3) 1800.07 120343 169.36 193.58 36815 0.01 126.92 25152 0.01 3.64e+05 3.20e+01
(20,3) 1800.05 107481 216.00 1800.05 150828 22.65 1800.04 156611 8.94 8.99e+03 1.44e+01
(20,3) 1800.05 162012 49.30 790.61 166079 0.00 1800.05 156891 13.02 2.35e+02 9.71e+00
(20,3) 1800.07 115944 331.43 1800.07 156808 20.78 1800.07 133551 106.07 1.06e+03 3.76e+00
(20,3) 6.74 1866 0.01 2.32 643 0.01 3.02 650 0.01 6.00e+02 1.01e+01

(30,4) 1800.08 102100 100.73 1800.08 116527 25.97 1800.07 103676 42.39 2.85e+03 5.81e+00
(30,4) 1800.06 117590 205.94 1800.05 138837 34.78 1800.07 113383 44.58 1.26e+04 6.50e+00
(30,4) 1800.07 95644 838.24 1800.04 145488 6.80 1345.35 136907 0.01 2.27e+05 1.41e+01
(30,4) 1800.03 110507 1463.26 1800.08 99003 130.64 1800.08 101895 75.89 2.57e+05 6.43e+00
(30,4) 66.06 5380 0.02 2.05 291 0.01 3.19 241 0.01 1.15e+05 1.04e+01

Table 1 Comparison of different SOCP-based BB methods for 1 < k < 5. In each row, the
solution method with the lowest solution time is highlighted. For instances where all three
methods time out (1800 seconds) before reaching optimality, the solution method with the
lowest objective value is highlighted. Two outliers are highlighted in blue.

caused in both instances by numerical inaccuracies within the interior point solves
in MOSEK due to the large condition numbers, i.e., 2.73e6 and 1.15e5. For k ≥ 5,
the condition number of 1-RSDCBB is even worse and 1-RSDCBB fails for almost all
instances (not reported here).
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A Proof of Propositions 1 and 2

Proposition 1 Let A ⊆ Sn and suppose S ∈ span(A) is nonsingular. Then, A is SDC if and
only if S−1A is a commuting set of diagonalizable matrices with real eigenvalues.

Proof. (⇒) Let P ∈ Rn×n furnished by SDC. For A ∈ A, note that

P−1S−1AP = (P ⊺SP )−1(P ⊺AP ).

Then, as P ⊺SP and P ⊺AP are both diagonal matrices with real entries, we deduce that S−1A
is diagonalizable with real eigenvalues. The fact that S−1A is a set of commuting matrices
follows similarly.

(⇐) Recall that a commuting set of diagonalizable matrices can be simultaneously diag-
onalized via a similarity transformation, i.e., there exists an invertible P ∈ Rn×n such that
P−1S−1AP is diagonal for each A ∈ A [18]. The diagonal entries of P−1S−1AP are further-
more real by the assumption that S−1A has a real spectrum. For each A ∈ A, define

Ā := P ⊺AP, DA := P−1S−1AP.

Next, note that the identity P−1S−1AP = (P ⊺SP )−1(P ⊺AP ) can be expressed as DA =
S̄−1Ā. Or, equivalently, S̄DA = Ā for all A ∈ A. For i, j ∈ [n], we have the identity

S̄i,j(DA)j,j = Āi,j = Āj,i = S̄j,i(DA)i,i = S̄i,j(DA)i,i.

Here, we have used that S̄ and Ā are symmetric and DA is real diagonal. In particular, if there
exists some A ∈ A such that (DA)i,i ̸= (DA)j,j , then S̄i,j = Āi,j = 0. Furthermore, by the
relation S̄DB = B̄, we also have that B̄i,j = 0 for all other B ∈ A.

We conclude that by permuting the columns of P if necessary (so that [n] is grouped
according to the equivalence relation: i ∼ j if and only if (DA)i,i = (DA)j,j for all A ∈ A),

we can write S̄ as a block diagonal matrix S̄ = Diag(S(1), . . . , S(k)). Furthermore, for every

A ∈ A, there exists λ1, . . . , λk ∈ R such that Ā = Diag(λ1S(1), . . . , λkS
(k)). It remains to note

that each block S(i) can be diagonalized separately.

Proposition 2 Let A ⊆ Sn and suppose S ∈ span(A) is a max-rank element of span(A).
Then, A is SDC if and only if range(A) ⊆ range(S) for every A ∈ A and

{
A|range(S) : A ∈ A

}
is SDC.
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Proof. It suffices to show that if A is SDC then range(A) ⊆ range(S) for every A ∈ A as then
applying Lemma 2 completes the proof.

Let r = rank(S). Let P ∈ Rn×n furnished by SDC. Note that by permuting the columns
of P if necessary, we may assume that P ⊺SP is a diagonal matrix with support contained in
its first r-many diagonal entries. As S is a max-rank element of span(A), we similarly have
that for every A ∈ A, the matrix P ⊺AP is a diagonal matrix with support contained in its
first r-many diagonal entries. For A ∈ A, write P ⊺AP = Diag(Ā, 0(n−r)×(n−r)) where Ā is a
diagonal r × r matrix. Then,

range(A) = range(P−⊺P ⊺APP−1) ⊆ span {q1, . . . , qr} .

Here, qi ∈ Rn is the ith column of P−⊺. On the other hand, as S̄ has full rank, range(S) =
span {q1, . . . , qr}.

B Facts about matrices with upper triangular Toeplitz blocks

Lemma 11 Let (n1, . . . , nk) with
∑

i ni = n. Suppose T ∈ T. Then, the characteristic poly-

nomial of T depends only on the entries
{
t
(1)
i,j : ni = nj

}
.

Proof. In this proof, we will use a, b ∈ [n] to index entries in T (specifically, Ta,b ∈ R is a
scalar, not a matrix block). For each a ∈ [n], let ia ∈ [k] denote the block containing a, and
let ℓa ∈ [nk] denote the position of a within block ia. By the assumption that T ∈ T, we have

Ta,b ̸= 0 =⇒ min
{
nia , nib

}
− nia + (ℓa − ℓb) ≥ 0.

Now, for each a ∈ [n], assign the weight wa := ℓa − nia
2

. Note that by construction, if
Ta,b ̸= 0, then

wa − wb =
nib

2
−

nia

2
+ (ℓa − ℓb) ≥ 0.

Furthermore, note that if Ta,b ̸= 0 and wa − wb = 0, then nia = nib and ℓa = ℓb.
Next, consider a permutation σ ∈ Sn such that

∏n
a=1 Ta,σ(a) ̸= 0. Note that

n∑
a=1

wa − wσ(a) =

n∑
a=1

wa −
n∑

a=1

wσ(a) = 0.

Then, by the above paragraph, we conclude that σ satisfies nia = niσ(a)
and ℓa = ℓσ(a) for

all a ∈ [n].
Returning to the previous notation, the characteristic polynomial of T depends only on

the entries
{
t
(1)
i,j : ni = nj

}
.

Lemma 5 Let (n1, . . . , nk) such that
∑

i ni = n. Then, for any T ∈ T, the matrices T ∈
Rn×n and Π(T ) ∈ Rk×k have the same eigenvalues.

Proof. Without loss of generality, suppose n1 ≤ · · · ≤ nk and let T ∈ T. By Lemma 11, T has
the same eigenvalues as the matrix T̂ ∈ T with entries

T̂
(ℓ)
i,j =

{
T

(ℓ)
i,j if ni = nj , ℓ = 1,

0 else.

Now, suppose that there are m distinct block sizes s1, . . . , sm. Partitioning both Π(T ) and T̂
according to s1, . . . , sm, we have that

Π(T ) = Diag(T̃1, . . . , T̃m) and T̄ = Diag(T̃1 ⊗ Is1 , . . . , T̃m ⊗ Ism ).

We conclude that Π(T ) and T̄ have the same eigenvalues.
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C Details for the Hermitian case

Let Hn denote the real vector space of n× n Hermitian matrices. For v ∈ Cn and A ∈ Cn×n

let v∗ and A∗ denote the conjugate transpose of v and A respectively.

C.1 Definitions and theorem statements

Almost all of our results extend verbatim to the Hermitian setting. For brevity, we only state
our more interesting definitions and results as adapted to this setting.

Definition 9 A set A ⊆ Hn is simultaneously diagonalizable via congruence (SDC) if there
exists an invertible P ∈ Cn×n such that P ∗AP is diagonal for all A ∈ A.

Definition 10 A set A ⊆ Hn is almost simultaneously diagonalizable via congruence (ASDC)
if there exist sequences Ai → A for every A ∈ A such that for every i ∈ N, the set {Ai : A ∈ A}
is SDC.

Definition 11 A set A ⊆ Hn is nonsingular if there exists a nonsingular A ∈ span(A). Else,
it is singular.

Definition 12 Given a set A ⊆ Hn, we will say that S ∈ A is a max-rank element of span(A)
if rank(S) = maxA∈A rank(A).

Theorem 8 Let A,B ∈ Hn and suppose A is invertible. Then, {A,B} is ASDC if and only
if A−1B has real eigenvalues.

Theorem 9 Let {A,B} ⊆ Hn. If {A,B} is singular, then it is ASDC.

Theorem 10 Let {A,B,C} ⊆ Hn and suppose A is invertible. Then, {A,B,C} is ASDC if
and only if

{
A−1B,A−1C

}
are a pair of commuting matrices with real eigenvalues.

Definition 13 Let A ⊆ Hn and d ∈ N. We will say that A is d-restricted SDC (d-RSDC) if
there exist matrices Ā ∈ Hn+d containing A as its top-left n×n principal submatrix for every
A ∈ A such that

{
Ā : A ∈ A

}
is SDC.

Theorem 11 Let A,B ∈ Hn. Then for every ϵ > 0, there exist Ã, B̃ ∈ Hn such that∥∥∥A− Ã
∥∥∥ , ∥∥∥B − B̃

∥∥∥ ≤ ϵ and
{
Ã, B̃

}
is 1-RSDC. Furthermore, if A is invertible and A−1B

has simple eigenvalues, then {A,B} is itself 1-RSDC.

Theorem 12 Let {A = In, B, C} ⊆ Hn. Then, if d < rank([B,C])/2, the set{(
A

0d

)
,

(
B

0d

)
,

(
C

0d

)}
is not ASDC.

Theorem 13 There exists a set A = {A1, . . . , A5} ⊆ H4 such that A1 is invertible, A−1
1 A is

a set of commuting matrices with real eigenvalues, and A is not ASDC.

In the Hermitian setting, the statement in Theorem 7 should be changed to: “There exists
a set A = {A1, . . . , A5} ⊆ H4 such that A1 is invertible, A−1

1 A is a set of commuting matrices
with real eigenvalues and A is not ASDC.” The proof is unchanged after setting

A1 =

(
1

1
1

1

)
, A2 =

(
0

0
1

0

)
, A3 =

(
0

0
0 1
1 0

)
,

A4 =

( 0
0

0 i
−i 0

)
, A5 =

(
0

0
0

1

)
.
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C.2 Necessary modifications

Next, we discuss technical changes that need to be made to adapt our proofs from the real
symmetric setting to the Hermitian setting. For brevity, we only list changes beyond the trivial
changes, e.g., replacing Sn by Hn, Rn×n by Cn×n, and ⊺ by ∗.

– In the Hermitian version of Proposition 3, the m2-many blocks corresponding to non-real
eigenvalues (previously (2)) will have the form

Si = F2ni , Ti = Fni ⊗
(

λ∗
i

λi

)
+Gni ⊗ F2

where ni ∈ N and λi ∈ C \ R. See [24, Theorem 9.2] for further details.

– In the proof of Lemma 3, note that for all i ∈ [r + 1,m], the block

S−1
i T̃i = Ini ⊗

(
λi

λ∗
i

)
+ (ηiIni + FniGni + δFniHni )⊗ I2.

The remainder of the proof is unchanged.

– In the proof of Theorem 2, we will work in the basis furnished by the Hermitian version
of Proposition 3 for C2k. That is, we may assume in the first two cases that A and B
(previously (6)) have the form

A =


1

1
. . .

1
1

Sm

 , B =


λ∗
1

λ1
. . .

λ∗
k

λk

Tm

 .

We will set Ãδ as in the Hermitian case for both Cases 1 and 2. We will set B̃δ to be

B̃δ =



λ∗
1

λ1

α1

√
−δi/2(

α1

√
−δi/2

)∗
. . .

...

λ∗
k

λk

αk

√
−δi/2(

αk

√
−δi/2

)∗(
α1

√
−δi
2

)∗
α1

√
−δi
2 . . .

(
αk

√
−δi
2

)∗
αk

√
−δi
2 δz


and

B̃δ =



λ∗
1

λ1

α1

√
−δi/2(

α1

√
−δi/2

)∗
. . .

...

λ∗
k

λk

αk

√
−δi/2(

αk

√
−δi/2

)∗
Gnm(

α1

√
−δi
2

)∗
α1

√
−δi
2 · · ·

(
αk

√
−δi
2

)∗
αk

√
−δi
2 δz e⊺1

Gnm e1


for Cases 1 and 2, respectively. Here, α ∈ Ck, z ∈ R, and δ > 0. The characteristic poly-
nomials of Ã−1

δ B̃δ are given by (8) and (13) in Cases 1 and 2 respectively. The remainder
of the proof remains unchanged.
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D An example where the SDC property is preserved under restriction

In this section, we give an example of a setting in which the restriction of an SDC set to
one of its principal submatrices results in another SDC set. This setting arises for example in
QCQPs [22].

Proposition 4 Let A1, . . . , Am ∈ Sn such that span({A1, . . . , Am}) contains a positive defi-
nite matrix. Let b1, . . . , bm ∈ Rn and c1, . . . , cm ∈ R, and define

Qi =

(
Ai bi
b⊺i ci

)
∈ Sn+1.

If
{
Q1, . . . , Qm, en+1e

⊺
n+1

}
is SDC, then so is {A1, . . . , Am}.

Proof. Without loss of generality, let A1 ≻ 0. Note that for all λ ∈ R large enough, the matrix
Sλ := Q1 + λen+1e

⊺
n+1 ≻ 0. By the inverse formula for a block matrix [18], we have that for

all λ large enough,

S−1
λ =

A−1
1 +

A−1
1 b1b

⊺
1A−1

1

λ+(c1−b
⊺
1A1b1)

−A−1
1 b1

λ+(c1−b1A
−1
1 b1)

−b
⊺
1A−1

1

λ+(c1−b1A
−1
1 b1)

1

λ+(c1−b1A
−1
1 b1)

 .

In particular,

lim
λ→∞

S−1
λ =

(
A−1

1
0

)
.

On the other hand, by Lemma 1, we have that for all i, j ∈ [m],

0 =
[
S−1
λ Qi, S

−1
λ Qj

]
.

Finally, by continuity we have that

0 = lim
λ→∞

[
S−1
λ Qi, S

−1
λ Qj

]
=

([
A−1

1 Ai, A
−1
1 Aj

]
0

)
.

We conclude that A−1
1 {A1, . . . , Am} commute, whence by Lemma 1 this set is SDC.
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